1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-10-01 12:30:00 +02:00

Implement AESMC, AESIMC, AESE, AESD and VEOR AArch32 instructions (#982)

* Add VEOR and AES instructions.

* Add tests for crypto instructions.

* Update ValueSource name.
This commit is contained in:
riperiperi 2020-03-13 23:29:58 +00:00 committed by GitHub
parent ff2bac9c90
commit dd433c1296
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 239 additions and 14 deletions

View file

@ -752,6 +752,10 @@ namespace ARMeilleure.Decoders
SetA32("<<<<01101111xxxxxxxxxx000111xxxx", InstName.Uxth, InstEmit32.Uxth, typeof(OpCode32AluUx)); SetA32("<<<<01101111xxxxxxxxxx000111xxxx", InstName.Uxth, InstEmit32.Uxth, typeof(OpCode32AluUx));
// FP & SIMD // FP & SIMD
SetA32("111100111x110000xxx0001101x0xxx0", InstName.Aesd_V, InstEmit32.Aesd_V, typeof(OpCode32Simd));
SetA32("111100111x110000xxx0001100x0xxx0", InstName.Aese_V, InstEmit32.Aese_V, typeof(OpCode32Simd));
SetA32("111100111x110000xxx0001111x0xxx0", InstName.Aesimc_V, InstEmit32.Aesimc_V, typeof(OpCode32Simd));
SetA32("111100111x110000xxx0001110x0xxx0", InstName.Aesmc_V, InstEmit32.Aesmc_V, typeof(OpCode32Simd));
SetA32("<<<<11101x110000xxxx10xx11x0xxxx", InstName.Vabs, InstEmit32.Vabs_S, typeof(OpCode32SimdRegS)); SetA32("<<<<11101x110000xxxx10xx11x0xxxx", InstName.Vabs, InstEmit32.Vabs_S, typeof(OpCode32SimdRegS));
SetA32("111100111x11xx01xxxx0x110xx0xxxx", InstName.Vabs, InstEmit32.Vabs_V, typeof(OpCode32SimdReg)); SetA32("111100111x11xx01xxxx0x110xx0xxxx", InstName.Vabs, InstEmit32.Vabs_V, typeof(OpCode32SimdReg));
SetA32("111100100xxxxxxxxxxx1000xxx0xxxx", InstName.Vadd, InstEmit32.Vadd_I, typeof(OpCode32SimdReg)); SetA32("111100100xxxxxxxxxxx1000xxx0xxxx", InstName.Vadd, InstEmit32.Vadd_I, typeof(OpCode32SimdReg));
@ -782,6 +786,7 @@ namespace ARMeilleure.Decoders
SetA32("<<<<11101x00xxxxxxxx101xx0x0xxxx", InstName.Vdiv, InstEmit32.Vdiv_S, typeof(OpCode32SimdRegS)); SetA32("<<<<11101x00xxxxxxxx101xx0x0xxxx", InstName.Vdiv, InstEmit32.Vdiv_S, typeof(OpCode32SimdRegS));
SetA32("<<<<11101xx0xxxxxxxx1011x0x10000", InstName.Vdup, InstEmit32.Vdup, typeof(OpCode32SimdDupGP)); SetA32("<<<<11101xx0xxxxxxxx1011x0x10000", InstName.Vdup, InstEmit32.Vdup, typeof(OpCode32SimdDupGP));
SetA32("111100111x11xxxxxxxx11000xx0xxxx", InstName.Vdup, InstEmit32.Vdup_1, typeof(OpCode32SimdDupElem)); SetA32("111100111x11xxxxxxxx11000xx0xxxx", InstName.Vdup, InstEmit32.Vdup_1, typeof(OpCode32SimdDupElem));
SetA32("111100110x00xxxxxxxx0001xxx1xxxx", InstName.Veor, InstEmit32.Veor_I, typeof(OpCode32SimdBinary));
SetA32("111100101x11xxxxxxxxxxxxxxx0xxxx", InstName.Vext, InstEmit32.Vext, typeof(OpCode32SimdExt)); SetA32("111100101x11xxxxxxxxxxxxxxx0xxxx", InstName.Vext, InstEmit32.Vext, typeof(OpCode32SimdExt));
SetA32("111101001x10xxxxxxxxxx00xxxxxxxx", InstName.Vld1, InstEmit32.Vld1, typeof(OpCode32SimdMemSingle)); SetA32("111101001x10xxxxxxxxxx00xxxxxxxx", InstName.Vld1, InstEmit32.Vld1, typeof(OpCode32SimdMemSingle));
SetA32("111101000x10xxxxxxxx0111xxxxxxxx", InstName.Vld1, InstEmit32.Vld1, typeof(OpCode32SimdMemPair)); // Regs = 1. SetA32("111101000x10xxxxxxxx0111xxxxxxxx", InstName.Vld1, InstEmit32.Vld1, typeof(OpCode32SimdMemPair)); // Regs = 1.

View file

@ -0,0 +1,49 @@
using ARMeilleure.Decoders;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using static ARMeilleure.Instructions.InstEmitHelper;
namespace ARMeilleure.Instructions
{
partial class InstEmit32
{
public static void Aesd_V(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
Operand d = GetVecA32(op.Qd);
Operand n = GetVecA32(op.Qm);
context.Copy(d, context.Call(new _V128_V128_V128(SoftFallback.Decrypt), d, n));
}
public static void Aese_V(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
Operand d = GetVecA32(op.Qd);
Operand n = GetVecA32(op.Qm);
context.Copy(d, context.Call(new _V128_V128_V128(SoftFallback.Encrypt), d, n));
}
public static void Aesimc_V(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
Operand n = GetVecA32(op.Qm);
context.Copy(GetVec(op.Qd), context.Call(new _V128_V128(SoftFallback.InverseMixColumns), n));
}
public static void Aesmc_V(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
Operand n = GetVecA32(op.Qm);
context.Copy(GetVec(op.Qd), context.Call(new _V128_V128(SoftFallback.MixColumns), n));
}
}
}

View file

@ -55,6 +55,18 @@ namespace ARMeilleure.Instructions
} }
} }
public static void Veor_I(ArmEmitterContext context)
{
if (Optimizations.UseSse2)
{
EmitVectorBinaryOpF32(context, Intrinsic.X86Pxor, Intrinsic.X86Pxor);
}
else
{
EmitVectorBinaryOpZx32(context, (op1, op2) => context.BitwiseExclusiveOr(op1, op2));
}
}
public static void Vorr_I(ArmEmitterContext context) public static void Vorr_I(ArmEmitterContext context)
{ {
if (Optimizations.UseSse2) if (Optimizations.UseSse2)

View file

@ -547,6 +547,7 @@ namespace ARMeilleure.Instructions
Vcvt, Vcvt,
Vdiv, Vdiv,
Vdup, Vdup,
Veor,
Vext, Vext,
Vld1, Vld1,
Vld2, Vld2,

View file

@ -164,11 +164,11 @@ namespace Ryujinx.Tests.Cpu
} }
} }
protected void ExecuteOpcodes() protected void ExecuteOpcodes(bool runUnicorn = true)
{ {
_translator.Execute(_context, _entryPoint); _translator.Execute(_context, _entryPoint);
if (_unicornAvailable) if (_unicornAvailable && runUnicorn)
{ {
_unicornEmu.RunForCount((ulong)(_currAddress - _entryPoint - 4) / 4); _unicornEmu.RunForCount((ulong)(_currAddress - _entryPoint - 4) / 4);
} }
@ -193,7 +193,8 @@ namespace Ryujinx.Tests.Cpu
bool zero = false, bool zero = false,
bool negative = false, bool negative = false,
int fpscr = 0, int fpscr = 0,
bool copyFpFlags = false) bool copyFpFlags = false,
bool runUnicorn = true)
{ {
Opcode(opcode); Opcode(opcode);
if (copyFpFlags) if (copyFpFlags)
@ -202,7 +203,7 @@ namespace Ryujinx.Tests.Cpu
} }
Opcode(0xe12fff1e); // BX LR Opcode(0xe12fff1e); // BX LR
SetContext(r0, r1, r2, r3, sp, v0, v1, v2, v3, v4, v5, v14, v15, overflow, carry, zero, negative, fpscr); SetContext(r0, r1, r2, r3, sp, v0, v1, v2, v3, v4, v5, v14, v15, overflow, carry, zero, negative, fpscr);
ExecuteOpcodes(); ExecuteOpcodes(runUnicorn);
return GetContext(); return GetContext();
} }

View file

@ -0,0 +1,155 @@
// https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
using ARMeilleure.State;
using NUnit.Framework;
namespace Ryujinx.Tests.Cpu
{
public class CpuTestSimdCrypto32 : CpuTest32
{
[Test, Description("AESD.8 <Qd>, <Qm>")]
public void Aesd_V([Values(0u)] uint rd,
[Values(2u)] uint rm,
[Values(0x7B5B546573745665ul)] ulong valueH,
[Values(0x63746F725D53475Dul)] ulong valueL,
[Random(2)] ulong roundKeyH,
[Random(2)] ulong roundKeyL,
[Values(0x8DCAB9BC035006BCul)] ulong resultH,
[Values(0x8F57161E00CAFD8Dul)] ulong resultL)
{
uint opcode = 0xf3b00340; // AESD.8 Q0, Q0
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
V128 v0 = MakeVectorE0E1(roundKeyL ^ valueL, roundKeyH ^ valueH);
V128 v1 = MakeVectorE0E1(roundKeyL, roundKeyH);
ExecutionContext context = SingleOpcode(opcode, v0: v0, v1: v1, runUnicorn: false);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
});
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(roundKeyL));
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(roundKeyH));
});
// Unicorn does not yet support crypto instructions in A32.
// CompareAgainstUnicorn();
}
[Test, Description("AESE.8 <Qd>, <Qm>")]
public void Aese_V([Values(0u)] uint rd,
[Values(2u)] uint rm,
[Values(0x7B5B546573745665ul)] ulong valueH,
[Values(0x63746F725D53475Dul)] ulong valueL,
[Random(2)] ulong roundKeyH,
[Random(2)] ulong roundKeyL,
[Values(0x8F92A04DFBED204Dul)] ulong resultH,
[Values(0x4C39B1402192A84Cul)] ulong resultL)
{
uint opcode = 0xf3b00300; // AESE.8 Q0, Q0
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
V128 v0 = MakeVectorE0E1(roundKeyL ^ valueL, roundKeyH ^ valueH);
V128 v1 = MakeVectorE0E1(roundKeyL, roundKeyH);
ExecutionContext context = SingleOpcode(opcode, v0: v0, v1: v1, runUnicorn: false);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
});
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(roundKeyL));
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(roundKeyH));
});
// Unicorn does not yet support crypto instructions in A32.
// CompareAgainstUnicorn();
}
[Test, Description("AESIMC.8 <Qd>, <Qm>")]
public void Aesimc_V([Values(0u)] uint rd,
[Values(2u, 0u)] uint rm,
[Values(0x8DCAB9DC035006BCul)] ulong valueH,
[Values(0x8F57161E00CAFD8Dul)] ulong valueL,
[Values(0xD635A667928B5EAEul)] ulong resultH,
[Values(0xEEC9CC3BC55F5777ul)] ulong resultL)
{
uint opcode = 0xf3b003c0; // AESIMC.8 Q0, Q0
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
V128 v = MakeVectorE0E1(valueL, valueH);
ExecutionContext context = SingleOpcode(
opcode,
v0: rm == 0u ? v : default(V128),
v1: rm == 2u ? v : default(V128),
runUnicorn: false);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
});
if (rm == 2u)
{
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(valueL));
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(valueH));
});
}
// Unicorn does not yet support crypto instructions in A32.
// CompareAgainstUnicorn();
}
[Test, Description("AESMC.8 <Qd>, <Qm>")]
public void Aesmc_V([Values(0u)] uint rd,
[Values(2u, 0u)] uint rm,
[Values(0x627A6F6644B109C8ul)] ulong valueH,
[Values(0x2B18330A81C3B3E5ul)] ulong valueL,
[Values(0x7B5B546573745665ul)] ulong resultH,
[Values(0x63746F725D53475Dul)] ulong resultL)
{
uint opcode = 0xf3b00380; // AESMC.8 Q0, Q0
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
V128 v = MakeVectorE0E1(valueL, valueH);
ExecutionContext context = SingleOpcode(
opcode,
v0: rm == 0u ? v : default(V128),
v1: rm == 2u ? v : default(V128),
runUnicorn: false);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
});
if (rm == 2u)
{
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(valueL));
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(valueH));
});
}
// Unicorn does not yet support crypto instructions in A32.
// CompareAgainstUnicorn();
}
}
}

View file

@ -12,14 +12,16 @@ namespace Ryujinx.Tests.Cpu
#if SimdLogical32 #if SimdLogical32
#region "ValueSource (Opcodes)" #region "ValueSource (Opcodes)"
private static uint[] _Vbif_Vbit_Vbsl_Vand_() private static uint[] _Vbif_Vbit_Vbsl_Vand_Vorr_Veor_()
{ {
return new uint[] return new uint[]
{ {
0xf3300110u, // VBIF D0, D0, D0 0xf3300110u, // VBIF D0, D0, D0
0xf3200110u, // VBIT D0, D0, D0 0xf3200110u, // VBIT D0, D0, D0
0xf3100110u, // VBSL D0, D0, D0 0xf3100110u, // VBSL D0, D0, D0
0xf2000110u // VAND D0, D0, D0 0xf2000110u, // VAND D0, D0, D0
0xf2200110u, // VORR D0, D0, D0
0xf3000110u // VEOR D0, D0, D0
}; };
} }
#endregion #endregion
@ -27,14 +29,14 @@ namespace Ryujinx.Tests.Cpu
private const int RndCnt = 2; private const int RndCnt = 2;
[Test, Pairwise] [Test, Pairwise]
public void Vbif_Vbit_Vbsl_Vand([ValueSource("_Vbif_Vbit_Vbsl_Vand_")] uint opcode, public void Vbif_Vbit_Vbsl_Vand_Vorr_Veor([ValueSource("_Vbif_Vbit_Vbsl_Vand_Vorr_Veor_")] uint opcode,
[Range(0u, 4u)] uint rd, [Range(0u, 4u)] uint rd,
[Range(0u, 4u)] uint rn, [Range(0u, 4u)] uint rn,
[Range(0u, 4u)] uint rm, [Range(0u, 4u)] uint rm,
[Random(RndCnt)] ulong z, [Random(RndCnt)] ulong z,
[Random(RndCnt)] ulong a, [Random(RndCnt)] ulong a,
[Random(RndCnt)] ulong b, [Random(RndCnt)] ulong b,
[Values] bool q) [Values] bool q)
{ {
if (q) if (q)
{ {