using Ryujinx.Common.Logging; using Ryujinx.Cpu; using Ryujinx.HLE.HOS.Kernel.Common; using Ryujinx.HLE.HOS.Kernel.Process; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading; namespace Ryujinx.HLE.HOS.Kernel.Threading { class KThread : KSynchronizationObject, IKFutureSchedulerObject { public const int MaxWaitSyncObjects = 64; private int _hostThreadRunning; public Thread HostThread { get; private set; } public ARMeilleure.State.ExecutionContext Context { get; private set; } public long AffinityMask { get; set; } public long ThreadUid { get; private set; } public long TotalTimeRunning { get; set; } public KSynchronizationObject SignaledObj { get; set; } public ulong CondVarAddress { get; set; } private ulong _entrypoint; public ulong MutexAddress { get; set; } public KProcess Owner { get; private set; } private ulong _tlsAddress; public ulong TlsAddress => _tlsAddress; public ulong TlsDramAddress { get; private set; } public KSynchronizationObject[] WaitSyncObjects { get; } public int[] WaitSyncHandles { get; } public long LastScheduledTime { get; set; } public LinkedListNode<KThread>[] SiblingsPerCore { get; private set; } public LinkedList<KThread> Withholder { get; set; } public LinkedListNode<KThread> WithholderNode { get; set; } public LinkedListNode<KThread> ProcessListNode { get; set; } private LinkedList<KThread> _mutexWaiters; private LinkedListNode<KThread> _mutexWaiterNode; public KThread MutexOwner { get; private set; } public int ThreadHandleForUserMutex { get; set; } private ThreadSchedState _forcePauseFlags; public KernelResult ObjSyncResult { get; set; } public int DynamicPriority { get; set; } public int CurrentCore { get; set; } public int BasePriority { get; set; } public int PreferredCore { get; set; } private long _affinityMaskOverride; private int _preferredCoreOverride; #pragma warning disable CS0649 private int _affinityOverrideCount; #pragma warning restore CS0649 public ThreadSchedState SchedFlags { get; private set; } private int _shallBeTerminated; public bool ShallBeTerminated { get => _shallBeTerminated != 0; set => _shallBeTerminated = value ? 1 : 0; } public bool SyncCancelled { get; set; } public bool WaitingSync { get; set; } private bool _hasExited; private bool _hasBeenInitialized; private bool _hasBeenReleased; public bool WaitingInArbitration { get; set; } private KScheduler _scheduler; private KSchedulingData _schedulingData; public long LastPc { get; set; } public KThread(KernelContext context) : base(context) { _scheduler = KernelContext.Scheduler; _schedulingData = KernelContext.Scheduler.SchedulingData; WaitSyncObjects = new KSynchronizationObject[MaxWaitSyncObjects]; WaitSyncHandles = new int[MaxWaitSyncObjects]; SiblingsPerCore = new LinkedListNode<KThread>[KScheduler.CpuCoresCount]; _mutexWaiters = new LinkedList<KThread>(); } public KernelResult Initialize( ulong entrypoint, ulong argsPtr, ulong stackTop, int priority, int defaultCpuCore, KProcess owner, ThreadType type = ThreadType.User, ThreadStart customHostThreadStart = null) { if ((uint)type > 3) { throw new ArgumentException($"Invalid thread type \"{type}\"."); } PreferredCore = defaultCpuCore; AffinityMask |= 1L << defaultCpuCore; SchedFlags = type == ThreadType.Dummy ? ThreadSchedState.Running : ThreadSchedState.None; CurrentCore = PreferredCore; DynamicPriority = priority; BasePriority = priority; ObjSyncResult = KernelResult.ThreadNotStarted; _entrypoint = entrypoint; if (type == ThreadType.User) { if (owner.AllocateThreadLocalStorage(out _tlsAddress) != KernelResult.Success) { return KernelResult.OutOfMemory; } TlsDramAddress = owner.MemoryManager.GetDramAddressFromVa(_tlsAddress); MemoryHelper.FillWithZeros(owner.CpuMemory, (long)_tlsAddress, KTlsPageInfo.TlsEntrySize); } bool is64Bits; if (owner != null) { Owner = owner; owner.IncrementReferenceCount(); owner.IncrementThreadCount(); is64Bits = (owner.MmuFlags & 1) != 0; } else { is64Bits = true; } HostThread = new Thread(customHostThreadStart ?? (() => ThreadStart(entrypoint))); Context = CpuContext.CreateExecutionContext(); bool isAarch32 = (Owner.MmuFlags & 1) == 0; Context.IsAarch32 = isAarch32; Context.SetX(0, argsPtr); if (isAarch32) { Context.SetX(13, (uint)stackTop); } else { Context.SetX(31, stackTop); } Context.CntfrqEl0 = 19200000; Context.Tpidr = (long)_tlsAddress; owner.SubscribeThreadEventHandlers(Context); ThreadUid = KernelContext.NewThreadUid(); HostThread.Name = $"HLE.HostThread.{ThreadUid}"; _hasBeenInitialized = true; if (owner != null) { owner.AddThread(this); if (owner.IsPaused) { KernelContext.CriticalSection.Enter(); if (ShallBeTerminated || SchedFlags == ThreadSchedState.TerminationPending) { KernelContext.CriticalSection.Leave(); return KernelResult.Success; } _forcePauseFlags |= ThreadSchedState.ProcessPauseFlag; CombineForcePauseFlags(); KernelContext.CriticalSection.Leave(); } } return KernelResult.Success; } public KernelResult Start() { if (!KernelContext.KernelInitialized) { KernelContext.CriticalSection.Enter(); if (!ShallBeTerminated && SchedFlags != ThreadSchedState.TerminationPending) { _forcePauseFlags |= ThreadSchedState.KernelInitPauseFlag; CombineForcePauseFlags(); } KernelContext.CriticalSection.Leave(); } KernelResult result = KernelResult.ThreadTerminating; KernelContext.CriticalSection.Enter(); if (!ShallBeTerminated) { KThread currentThread = KernelContext.Scheduler.GetCurrentThread(); while (SchedFlags != ThreadSchedState.TerminationPending && currentThread.SchedFlags != ThreadSchedState.TerminationPending && !currentThread.ShallBeTerminated) { if ((SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.None) { result = KernelResult.InvalidState; break; } if (currentThread._forcePauseFlags == ThreadSchedState.None) { if (Owner != null && _forcePauseFlags != ThreadSchedState.None) { CombineForcePauseFlags(); } SetNewSchedFlags(ThreadSchedState.Running); result = KernelResult.Success; break; } else { currentThread.CombineForcePauseFlags(); KernelContext.CriticalSection.Leave(); KernelContext.CriticalSection.Enter(); if (currentThread.ShallBeTerminated) { break; } } } } KernelContext.CriticalSection.Leave(); return result; } public void Exit() { // TODO: Debug event. if (Owner != null) { Owner.ResourceLimit?.Release(LimitableResource.Thread, 0, 1); _hasBeenReleased = true; } KernelContext.CriticalSection.Enter(); _forcePauseFlags &= ~ThreadSchedState.ForcePauseMask; ExitImpl(); KernelContext.CriticalSection.Leave(); DecrementReferenceCount(); } public ThreadSchedState PrepareForTermination() { KernelContext.CriticalSection.Enter(); ThreadSchedState result; if (Interlocked.CompareExchange(ref _shallBeTerminated, 1, 0) == 0) { if ((SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.None) { SchedFlags = ThreadSchedState.TerminationPending; } else { if (_forcePauseFlags != ThreadSchedState.None) { _forcePauseFlags &= ~ThreadSchedState.ThreadPauseFlag; ThreadSchedState oldSchedFlags = SchedFlags; SchedFlags &= ThreadSchedState.LowMask; AdjustScheduling(oldSchedFlags); } if (BasePriority >= 0x10) { SetPriority(0xF); } if ((SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.Running) { // TODO: GIC distributor stuffs (sgir changes ect) Context.RequestInterrupt(); } SignaledObj = null; ObjSyncResult = KernelResult.ThreadTerminating; ReleaseAndResume(); } } result = SchedFlags; KernelContext.CriticalSection.Leave(); return result & ThreadSchedState.LowMask; } public void Terminate() { ThreadSchedState state = PrepareForTermination(); if (state != ThreadSchedState.TerminationPending) { KernelContext.Synchronization.WaitFor(new KSynchronizationObject[] { this }, -1, out _); } } public void HandlePostSyscall() { ThreadSchedState state; do { if (ShallBeTerminated || SchedFlags == ThreadSchedState.TerminationPending) { KernelContext.Scheduler.ExitThread(this); Exit(); // As the death of the thread is handled by the CPU emulator, we differ from the official kernel and return here. break; } KernelContext.CriticalSection.Enter(); if (ShallBeTerminated || SchedFlags == ThreadSchedState.TerminationPending) { state = ThreadSchedState.TerminationPending; } else { if (_forcePauseFlags != ThreadSchedState.None) { CombineForcePauseFlags(); } state = ThreadSchedState.Running; } KernelContext.CriticalSection.Leave(); } while (state == ThreadSchedState.TerminationPending); } private void ExitImpl() { KernelContext.CriticalSection.Enter(); SetNewSchedFlags(ThreadSchedState.TerminationPending); _hasExited = true; Signal(); KernelContext.CriticalSection.Leave(); } public KernelResult Sleep(long timeout) { KernelContext.CriticalSection.Enter(); if (ShallBeTerminated || SchedFlags == ThreadSchedState.TerminationPending) { KernelContext.CriticalSection.Leave(); return KernelResult.ThreadTerminating; } SetNewSchedFlags(ThreadSchedState.Paused); if (timeout > 0) { KernelContext.TimeManager.ScheduleFutureInvocation(this, timeout); } KernelContext.CriticalSection.Leave(); if (timeout > 0) { KernelContext.TimeManager.UnscheduleFutureInvocation(this); } return 0; } public void Yield() { KernelContext.CriticalSection.Enter(); if (SchedFlags != ThreadSchedState.Running) { KernelContext.CriticalSection.Leave(); KernelContext.Scheduler.ContextSwitch(); return; } if (DynamicPriority < KScheduler.PrioritiesCount) { // Move current thread to the end of the queue. _schedulingData.Reschedule(DynamicPriority, CurrentCore, this); } _scheduler.ThreadReselectionRequested = true; KernelContext.CriticalSection.Leave(); KernelContext.Scheduler.ContextSwitch(); } public void YieldWithLoadBalancing() { KernelContext.CriticalSection.Enter(); if (SchedFlags != ThreadSchedState.Running) { KernelContext.CriticalSection.Leave(); KernelContext.Scheduler.ContextSwitch(); return; } int prio = DynamicPriority; int core = CurrentCore; KThread nextThreadOnCurrentQueue = null; if (DynamicPriority < KScheduler.PrioritiesCount) { // Move current thread to the end of the queue. _schedulingData.Reschedule(prio, core, this); Func<KThread, bool> predicate = x => x.DynamicPriority == prio; nextThreadOnCurrentQueue = _schedulingData.ScheduledThreads(core).FirstOrDefault(predicate); } IEnumerable<KThread> SuitableCandidates() { foreach (KThread thread in _schedulingData.SuggestedThreads(core)) { int srcCore = thread.CurrentCore; if (srcCore >= 0) { KThread selectedSrcCore = _scheduler.CoreContexts[srcCore].SelectedThread; if (selectedSrcCore == thread || ((selectedSrcCore?.DynamicPriority ?? 2) < 2)) { continue; } } // If the candidate was scheduled after the current thread, then it's not worth it, // unless the priority is higher than the current one. if (nextThreadOnCurrentQueue.LastScheduledTime >= thread.LastScheduledTime || nextThreadOnCurrentQueue.DynamicPriority < thread.DynamicPriority) { yield return thread; } } } KThread dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority <= prio); if (dst != null) { _schedulingData.TransferToCore(dst.DynamicPriority, core, dst); _scheduler.ThreadReselectionRequested = true; } if (this != nextThreadOnCurrentQueue) { _scheduler.ThreadReselectionRequested = true; } KernelContext.CriticalSection.Leave(); KernelContext.Scheduler.ContextSwitch(); } public void YieldAndWaitForLoadBalancing() { KernelContext.CriticalSection.Enter(); if (SchedFlags != ThreadSchedState.Running) { KernelContext.CriticalSection.Leave(); KernelContext.Scheduler.ContextSwitch(); return; } int core = CurrentCore; _schedulingData.TransferToCore(DynamicPriority, -1, this); KThread selectedThread = null; if (!_schedulingData.ScheduledThreads(core).Any()) { foreach (KThread thread in _schedulingData.SuggestedThreads(core)) { if (thread.CurrentCore < 0) { continue; } KThread firstCandidate = _schedulingData.ScheduledThreads(thread.CurrentCore).FirstOrDefault(); if (firstCandidate == thread) { continue; } if (firstCandidate == null || firstCandidate.DynamicPriority >= 2) { _schedulingData.TransferToCore(thread.DynamicPriority, core, thread); selectedThread = thread; } break; } } if (selectedThread != this) { _scheduler.ThreadReselectionRequested = true; } KernelContext.CriticalSection.Leave(); KernelContext.Scheduler.ContextSwitch(); } public void SetPriority(int priority) { KernelContext.CriticalSection.Enter(); BasePriority = priority; UpdatePriorityInheritance(); KernelContext.CriticalSection.Leave(); } public KernelResult SetActivity(bool pause) { KernelResult result = KernelResult.Success; KernelContext.CriticalSection.Enter(); ThreadSchedState lowNibble = SchedFlags & ThreadSchedState.LowMask; if (lowNibble != ThreadSchedState.Paused && lowNibble != ThreadSchedState.Running) { KernelContext.CriticalSection.Leave(); return KernelResult.InvalidState; } KernelContext.CriticalSection.Enter(); if (!ShallBeTerminated && SchedFlags != ThreadSchedState.TerminationPending) { if (pause) { // Pause, the force pause flag should be clear (thread is NOT paused). if ((_forcePauseFlags & ThreadSchedState.ThreadPauseFlag) == 0) { _forcePauseFlags |= ThreadSchedState.ThreadPauseFlag; CombineForcePauseFlags(); } else { result = KernelResult.InvalidState; } } else { // Unpause, the force pause flag should be set (thread is paused). if ((_forcePauseFlags & ThreadSchedState.ThreadPauseFlag) != 0) { ThreadSchedState oldForcePauseFlags = _forcePauseFlags; _forcePauseFlags &= ~ThreadSchedState.ThreadPauseFlag; if ((oldForcePauseFlags & ~ThreadSchedState.ThreadPauseFlag) == ThreadSchedState.None) { ThreadSchedState oldSchedFlags = SchedFlags; SchedFlags &= ThreadSchedState.LowMask; AdjustScheduling(oldSchedFlags); } } else { result = KernelResult.InvalidState; } } } KernelContext.CriticalSection.Leave(); KernelContext.CriticalSection.Leave(); return result; } public void CancelSynchronization() { KernelContext.CriticalSection.Enter(); if ((SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.Paused || !WaitingSync) { SyncCancelled = true; } else if (Withholder != null) { Withholder.Remove(WithholderNode); SetNewSchedFlags(ThreadSchedState.Running); Withholder = null; SyncCancelled = true; } else { SignaledObj = null; ObjSyncResult = KernelResult.Cancelled; SetNewSchedFlags(ThreadSchedState.Running); SyncCancelled = false; } KernelContext.CriticalSection.Leave(); } public KernelResult SetCoreAndAffinityMask(int newCore, long newAffinityMask) { KernelContext.CriticalSection.Enter(); bool useOverride = _affinityOverrideCount != 0; // The value -3 is "do not change the preferred core". if (newCore == -3) { newCore = useOverride ? _preferredCoreOverride : PreferredCore; if ((newAffinityMask & (1 << newCore)) == 0) { KernelContext.CriticalSection.Leave(); return KernelResult.InvalidCombination; } } if (useOverride) { _preferredCoreOverride = newCore; _affinityMaskOverride = newAffinityMask; } else { long oldAffinityMask = AffinityMask; PreferredCore = newCore; AffinityMask = newAffinityMask; if (oldAffinityMask != newAffinityMask) { int oldCore = CurrentCore; if (CurrentCore >= 0 && ((AffinityMask >> CurrentCore) & 1) == 0) { if (PreferredCore < 0) { CurrentCore = HighestSetCore(AffinityMask); } else { CurrentCore = PreferredCore; } } AdjustSchedulingForNewAffinity(oldAffinityMask, oldCore); } } KernelContext.CriticalSection.Leave(); return KernelResult.Success; } private static int HighestSetCore(long mask) { for (int core = KScheduler.CpuCoresCount - 1; core >= 0; core--) { if (((mask >> core) & 1) != 0) { return core; } } return -1; } private void CombineForcePauseFlags() { ThreadSchedState oldFlags = SchedFlags; ThreadSchedState lowNibble = SchedFlags & ThreadSchedState.LowMask; SchedFlags = lowNibble | _forcePauseFlags; AdjustScheduling(oldFlags); } private void SetNewSchedFlags(ThreadSchedState newFlags) { KernelContext.CriticalSection.Enter(); ThreadSchedState oldFlags = SchedFlags; SchedFlags = (oldFlags & ThreadSchedState.HighMask) | newFlags; if ((oldFlags & ThreadSchedState.LowMask) != newFlags) { AdjustScheduling(oldFlags); } KernelContext.CriticalSection.Leave(); } public void ReleaseAndResume() { KernelContext.CriticalSection.Enter(); if ((SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.Paused) { if (Withholder != null) { Withholder.Remove(WithholderNode); SetNewSchedFlags(ThreadSchedState.Running); Withholder = null; } else { SetNewSchedFlags(ThreadSchedState.Running); } } KernelContext.CriticalSection.Leave(); } public void Reschedule(ThreadSchedState newFlags) { KernelContext.CriticalSection.Enter(); ThreadSchedState oldFlags = SchedFlags; SchedFlags = (oldFlags & ThreadSchedState.HighMask) | (newFlags & ThreadSchedState.LowMask); AdjustScheduling(oldFlags); KernelContext.CriticalSection.Leave(); } public void AddMutexWaiter(KThread requester) { AddToMutexWaitersList(requester); requester.MutexOwner = this; UpdatePriorityInheritance(); } public void RemoveMutexWaiter(KThread thread) { if (thread._mutexWaiterNode?.List != null) { _mutexWaiters.Remove(thread._mutexWaiterNode); } thread.MutexOwner = null; UpdatePriorityInheritance(); } public KThread RelinquishMutex(ulong mutexAddress, out int count) { count = 0; if (_mutexWaiters.First == null) { return null; } KThread newMutexOwner = null; LinkedListNode<KThread> currentNode = _mutexWaiters.First; do { // Skip all threads that are not waiting for this mutex. while (currentNode != null && currentNode.Value.MutexAddress != mutexAddress) { currentNode = currentNode.Next; } if (currentNode == null) { break; } LinkedListNode<KThread> nextNode = currentNode.Next; _mutexWaiters.Remove(currentNode); currentNode.Value.MutexOwner = newMutexOwner; if (newMutexOwner != null) { // New owner was already selected, re-insert on new owner list. newMutexOwner.AddToMutexWaitersList(currentNode.Value); } else { // New owner not selected yet, use current thread. newMutexOwner = currentNode.Value; } count++; currentNode = nextNode; } while (currentNode != null); if (newMutexOwner != null) { UpdatePriorityInheritance(); newMutexOwner.UpdatePriorityInheritance(); } return newMutexOwner; } private void UpdatePriorityInheritance() { // If any of the threads waiting for the mutex has // higher priority than the current thread, then // the current thread inherits that priority. int highestPriority = BasePriority; if (_mutexWaiters.First != null) { int waitingDynamicPriority = _mutexWaiters.First.Value.DynamicPriority; if (waitingDynamicPriority < highestPriority) { highestPriority = waitingDynamicPriority; } } if (highestPriority != DynamicPriority) { int oldPriority = DynamicPriority; DynamicPriority = highestPriority; AdjustSchedulingForNewPriority(oldPriority); if (MutexOwner != null) { // Remove and re-insert to ensure proper sorting based on new priority. MutexOwner._mutexWaiters.Remove(_mutexWaiterNode); MutexOwner.AddToMutexWaitersList(this); MutexOwner.UpdatePriorityInheritance(); } } } private void AddToMutexWaitersList(KThread thread) { LinkedListNode<KThread> nextPrio = _mutexWaiters.First; int currentPriority = thread.DynamicPriority; while (nextPrio != null && nextPrio.Value.DynamicPriority <= currentPriority) { nextPrio = nextPrio.Next; } if (nextPrio != null) { thread._mutexWaiterNode = _mutexWaiters.AddBefore(nextPrio, thread); } else { thread._mutexWaiterNode = _mutexWaiters.AddLast(thread); } } private void AdjustScheduling(ThreadSchedState oldFlags) { if (oldFlags == SchedFlags) { return; } if (oldFlags == ThreadSchedState.Running) { // Was running, now it's stopped. if (CurrentCore >= 0) { _schedulingData.Unschedule(DynamicPriority, CurrentCore, this); } for (int core = 0; core < KScheduler.CpuCoresCount; core++) { if (core != CurrentCore && ((AffinityMask >> core) & 1) != 0) { _schedulingData.Unsuggest(DynamicPriority, core, this); } } } else if (SchedFlags == ThreadSchedState.Running) { // Was stopped, now it's running. if (CurrentCore >= 0) { _schedulingData.Schedule(DynamicPriority, CurrentCore, this); } for (int core = 0; core < KScheduler.CpuCoresCount; core++) { if (core != CurrentCore && ((AffinityMask >> core) & 1) != 0) { _schedulingData.Suggest(DynamicPriority, core, this); } } } _scheduler.ThreadReselectionRequested = true; } private void AdjustSchedulingForNewPriority(int oldPriority) { if (SchedFlags != ThreadSchedState.Running) { return; } // Remove thread from the old priority queues. if (CurrentCore >= 0) { _schedulingData.Unschedule(oldPriority, CurrentCore, this); } for (int core = 0; core < KScheduler.CpuCoresCount; core++) { if (core != CurrentCore && ((AffinityMask >> core) & 1) != 0) { _schedulingData.Unsuggest(oldPriority, core, this); } } // Add thread to the new priority queues. KThread currentThread = _scheduler.GetCurrentThread(); if (CurrentCore >= 0) { if (currentThread == this) { _schedulingData.SchedulePrepend(DynamicPriority, CurrentCore, this); } else { _schedulingData.Schedule(DynamicPriority, CurrentCore, this); } } for (int core = 0; core < KScheduler.CpuCoresCount; core++) { if (core != CurrentCore && ((AffinityMask >> core) & 1) != 0) { _schedulingData.Suggest(DynamicPriority, core, this); } } _scheduler.ThreadReselectionRequested = true; } private void AdjustSchedulingForNewAffinity(long oldAffinityMask, int oldCore) { if (SchedFlags != ThreadSchedState.Running || DynamicPriority >= KScheduler.PrioritiesCount) { return; } // Remove thread from the old priority queues. for (int core = 0; core < KScheduler.CpuCoresCount; core++) { if (((oldAffinityMask >> core) & 1) != 0) { if (core == oldCore) { _schedulingData.Unschedule(DynamicPriority, core, this); } else { _schedulingData.Unsuggest(DynamicPriority, core, this); } } } // Add thread to the new priority queues. for (int core = 0; core < KScheduler.CpuCoresCount; core++) { if (((AffinityMask >> core) & 1) != 0) { if (core == CurrentCore) { _schedulingData.Schedule(DynamicPriority, core, this); } else { _schedulingData.Suggest(DynamicPriority, core, this); } } } _scheduler.ThreadReselectionRequested = true; } public void SetEntryArguments(long argsPtr, int threadHandle) { Context.SetX(0, (ulong)argsPtr); Context.SetX(1, (ulong)threadHandle); } public void TimeUp() { ReleaseAndResume(); } public string GetGuestStackTrace() { return Owner.Debugger.GetGuestStackTrace(Context); } public void PrintGuestStackTrace() { Logger.Info?.Print(LogClass.Cpu, $"Guest stack trace:\n{GetGuestStackTrace()}\n"); } public void Execute() { if (Interlocked.CompareExchange(ref _hostThreadRunning, 1, 0) == 0) { HostThread.Start(); } } private void ThreadStart(ulong entrypoint) { Owner.CpuContext.Execute(Context, entrypoint); ThreadExit(); Context.Dispose(); } private void ThreadExit() { KernelContext.Scheduler.ExitThread(this); KernelContext.Scheduler.RemoveThread(this); } public bool IsCurrentHostThread() { return Thread.CurrentThread == HostThread; } public override bool IsSignaled() { return _hasExited; } protected override void Destroy() { if (_hasBeenInitialized) { FreeResources(); bool released = Owner != null || _hasBeenReleased; if (Owner != null) { Owner.ResourceLimit?.Release(LimitableResource.Thread, 1, released ? 0 : 1); Owner.DecrementReferenceCount(); } else { KernelContext.ResourceLimit.Release(LimitableResource.Thread, 1, released ? 0 : 1); } } } private void FreeResources() { Owner?.RemoveThread(this); if (_tlsAddress != 0 && Owner.FreeThreadLocalStorage(_tlsAddress) != KernelResult.Success) { throw new InvalidOperationException("Unexpected failure freeing thread local storage."); } KernelContext.CriticalSection.Enter(); // Wake up all threads that may be waiting for a mutex being held by this thread. foreach (KThread thread in _mutexWaiters) { thread.MutexOwner = null; thread._preferredCoreOverride = 0; thread.ObjSyncResult = KernelResult.InvalidState; thread.ReleaseAndResume(); } KernelContext.CriticalSection.Leave(); Owner?.DecrementThreadCountAndTerminateIfZero(); } } }