using Ryujinx.Graphics.Shader.Decoders; using Ryujinx.Graphics.Shader.IntermediateRepresentation; using System; using static Ryujinx.Graphics.Shader.IntermediateRepresentation.OperandHelper; namespace Ryujinx.Graphics.Shader.Translation.Optimizations { static class ConstantFolding { public static void RunPass(Operation operation) { if (!AreAllSourcesConstant(operation)) { return; } switch (operation.Inst) { case Instruction.Add: EvaluateBinary(operation, (x, y) => x + y); break; case Instruction.BitCount: EvaluateUnary(operation, (x) => BitCount(x)); break; case Instruction.BitwiseAnd: EvaluateBinary(operation, (x, y) => x & y); break; case Instruction.BitwiseExclusiveOr: EvaluateBinary(operation, (x, y) => x ^ y); break; case Instruction.BitwiseNot: EvaluateUnary(operation, (x) => ~x); break; case Instruction.BitwiseOr: EvaluateBinary(operation, (x, y) => x | y); break; case Instruction.BitfieldExtractS32: BitfieldExtractS32(operation); break; case Instruction.BitfieldExtractU32: BitfieldExtractU32(operation); break; case Instruction.Clamp: EvaluateTernary(operation, (x, y, z) => Math.Clamp(x, y, z)); break; case Instruction.ClampU32: EvaluateTernary(operation, (x, y, z) => (int)Math.Clamp((uint)x, (uint)y, (uint)z)); break; case Instruction.CompareEqual: EvaluateBinary(operation, (x, y) => x == y); break; case Instruction.CompareGreater: EvaluateBinary(operation, (x, y) => x > y); break; case Instruction.CompareGreaterOrEqual: EvaluateBinary(operation, (x, y) => x >= y); break; case Instruction.CompareGreaterOrEqualU32: EvaluateBinary(operation, (x, y) => (uint)x >= (uint)y); break; case Instruction.CompareGreaterU32: EvaluateBinary(operation, (x, y) => (uint)x > (uint)y); break; case Instruction.CompareLess: EvaluateBinary(operation, (x, y) => x < y); break; case Instruction.CompareLessOrEqual: EvaluateBinary(operation, (x, y) => x <= y); break; case Instruction.CompareLessOrEqualU32: EvaluateBinary(operation, (x, y) => (uint)x <= (uint)y); break; case Instruction.CompareLessU32: EvaluateBinary(operation, (x, y) => (uint)x < (uint)y); break; case Instruction.CompareNotEqual: EvaluateBinary(operation, (x, y) => x != y); break; case Instruction.Divide: EvaluateBinary(operation, (x, y) => y != 0 ? x / y : 0); break; case Instruction.FP32 | Instruction.Add: EvaluateFPBinary(operation, (x, y) => x + y); break; case Instruction.FP32 | Instruction.Clamp: EvaluateFPTernary(operation, (x, y, z) => Math.Clamp(x, y, z)); break; case Instruction.FP32 | Instruction.CompareEqual: EvaluateFPBinary(operation, (x, y) => x == y); break; case Instruction.FP32 | Instruction.CompareGreater: EvaluateFPBinary(operation, (x, y) => x > y); break; case Instruction.FP32 | Instruction.CompareGreaterOrEqual: EvaluateFPBinary(operation, (x, y) => x >= y); break; case Instruction.FP32 | Instruction.CompareLess: EvaluateFPBinary(operation, (x, y) => x < y); break; case Instruction.FP32 | Instruction.CompareLessOrEqual: EvaluateFPBinary(operation, (x, y) => x <= y); break; case Instruction.FP32 | Instruction.CompareNotEqual: EvaluateFPBinary(operation, (x, y) => x != y); break; case Instruction.FP32 | Instruction.Divide: EvaluateFPBinary(operation, (x, y) => x / y); break; case Instruction.FP32 | Instruction.Multiply: EvaluateFPBinary(operation, (x, y) => x * y); break; case Instruction.FP32 | Instruction.Negate: EvaluateFPUnary(operation, (x) => -x); break; case Instruction.FP32 | Instruction.Subtract: EvaluateFPBinary(operation, (x, y) => x - y); break; case Instruction.IsNan: EvaluateFPUnary(operation, (x) => float.IsNaN(x)); break; case Instruction.Maximum: EvaluateBinary(operation, (x, y) => Math.Max(x, y)); break; case Instruction.MaximumU32: EvaluateBinary(operation, (x, y) => (int)Math.Max((uint)x, (uint)y)); break; case Instruction.Minimum: EvaluateBinary(operation, (x, y) => Math.Min(x, y)); break; case Instruction.MinimumU32: EvaluateBinary(operation, (x, y) => (int)Math.Min((uint)x, (uint)y)); break; case Instruction.Multiply: EvaluateBinary(operation, (x, y) => x * y); break; case Instruction.Negate: EvaluateUnary(operation, (x) => -x); break; case Instruction.ShiftLeft: EvaluateBinary(operation, (x, y) => x << y); break; case Instruction.ShiftRightS32: EvaluateBinary(operation, (x, y) => x >> y); break; case Instruction.ShiftRightU32: EvaluateBinary(operation, (x, y) => (int)((uint)x >> y)); break; case Instruction.Subtract: EvaluateBinary(operation, (x, y) => x - y); break; case Instruction.UnpackHalf2x16: UnpackHalf2x16(operation); break; } } private static bool AreAllSourcesConstant(Operation operation) { for (int index = 0; index < operation.SourcesCount; index++) { if (operation.GetSource(index).Type != OperandType.Constant) { return false; } } return true; } private static int BitCount(int value) { int count = 0; for (int bit = 0; bit < 32; bit++) { if (value.Extract(bit)) { count++; } } return count; } private static void BitfieldExtractS32(Operation operation) { int value = GetBitfieldExtractValue(operation); int shift = 32 - operation.GetSource(2).Value; value = (value << shift) >> shift; operation.TurnIntoCopy(Const(value)); } private static void BitfieldExtractU32(Operation operation) { operation.TurnIntoCopy(Const(GetBitfieldExtractValue(operation))); } private static int GetBitfieldExtractValue(Operation operation) { int value = operation.GetSource(0).Value; int lsb = operation.GetSource(1).Value; int length = operation.GetSource(2).Value; return value.Extract(lsb, length); } private static void UnpackHalf2x16(Operation operation) { int value = operation.GetSource(0).Value; value = (value >> operation.Index * 16) & 0xffff; operation.TurnIntoCopy(ConstF(HalfConversion.HalfToSingle(value))); } private static void FPNegate(Operation operation) { float value = operation.GetSource(0).AsFloat(); operation.TurnIntoCopy(ConstF(-value)); } private static void EvaluateUnary(Operation operation, Func<int, int> op) { int x = operation.GetSource(0).Value; operation.TurnIntoCopy(Const(op(x))); } private static void EvaluateFPUnary(Operation operation, Func<float, float> op) { float x = operation.GetSource(0).AsFloat(); operation.TurnIntoCopy(ConstF(op(x))); } private static void EvaluateFPUnary(Operation operation, Func<float, bool> op) { float x = operation.GetSource(0).AsFloat(); operation.TurnIntoCopy(Const(op(x) ? IrConsts.True : IrConsts.False)); } private static void EvaluateBinary(Operation operation, Func<int, int, int> op) { int x = operation.GetSource(0).Value; int y = operation.GetSource(1).Value; operation.TurnIntoCopy(Const(op(x, y))); } private static void EvaluateBinary(Operation operation, Func<int, int, bool> op) { int x = operation.GetSource(0).Value; int y = operation.GetSource(1).Value; operation.TurnIntoCopy(Const(op(x, y) ? IrConsts.True : IrConsts.False)); } private static void EvaluateFPBinary(Operation operation, Func<float, float, float> op) { float x = operation.GetSource(0).AsFloat(); float y = operation.GetSource(1).AsFloat(); operation.TurnIntoCopy(ConstF(op(x, y))); } private static void EvaluateFPBinary(Operation operation, Func<float, float, bool> op) { float x = operation.GetSource(0).AsFloat(); float y = operation.GetSource(1).AsFloat(); operation.TurnIntoCopy(Const(op(x, y) ? IrConsts.True : IrConsts.False)); } private static void EvaluateTernary(Operation operation, Func<int, int, int, int> op) { int x = operation.GetSource(0).Value; int y = operation.GetSource(1).Value; int z = operation.GetSource(2).Value; operation.TurnIntoCopy(Const(op(x, y, z))); } private static void EvaluateFPTernary(Operation operation, Func<float, float, float, float> op) { float x = operation.GetSource(0).AsFloat(); float y = operation.GetSource(1).AsFloat(); float z = operation.GetSource(2).AsFloat(); operation.TurnIntoCopy(ConstF(op(x, y, z))); } } }