using Ryujinx.Graphics.GAL; using Ryujinx.Graphics.Shader; using Silk.NET.Vulkan; using System; using System.Numerics; namespace Ryujinx.Graphics.Vulkan { class PipelineBase : IDisposable { public const int DescriptorSetLayouts = 4; public const int UniformSetIndex = 0; public const int StorageSetIndex = 1; public const int TextureSetIndex = 2; public const int ImageSetIndex = 3; protected readonly VulkanRenderer Gd; protected readonly Device Device; public readonly PipelineCache PipelineCache; protected readonly AutoFlushCounter AutoFlush; protected PipelineDynamicState DynamicState; private PipelineState _newState; private bool _stateDirty; private GAL.PrimitiveTopology _topology; private ulong _currentPipelineHandle; protected Auto<DisposablePipeline> Pipeline; protected PipelineBindPoint Pbp; protected CommandBufferScoped Cbs; protected CommandBufferScoped? PreloadCbs; protected CommandBuffer CommandBuffer; public CommandBufferScoped CurrentCommandBuffer => Cbs; private ShaderCollection _program; private Vector4<float>[] _renderScale = new Vector4<float>[73]; private int _fragmentScaleCount; protected FramebufferParams FramebufferParams; private Auto<DisposableFramebuffer> _framebuffer; private Auto<DisposableRenderPass> _renderPass; private int _writtenAttachmentCount; private bool _renderPassActive; private readonly DescriptorSetUpdater _descriptorSetUpdater; private IndexBufferState _indexBuffer; private IndexBufferPattern _indexBufferPattern; private readonly BufferState[] _transformFeedbackBuffers; private readonly VertexBufferState[] _vertexBuffers; private ulong _vertexBuffersDirty; protected Rectangle<int> ClearScissor; public SupportBufferUpdater SupportBufferUpdater; public IndexBufferPattern QuadsToTrisPattern; public IndexBufferPattern TriFanToTrisPattern; private bool _needsIndexBufferRebind; private bool _needsTransformFeedbackBuffersRebind; private bool _tfEnabled; private bool _tfActive; private PipelineColorBlendAttachmentState[] _storedBlend; public ulong DrawCount { get; private set; } public unsafe PipelineBase(VulkanRenderer gd, Device device) { Gd = gd; Device = device; AutoFlush = new AutoFlushCounter(); var pipelineCacheCreateInfo = new PipelineCacheCreateInfo() { SType = StructureType.PipelineCacheCreateInfo }; gd.Api.CreatePipelineCache(device, pipelineCacheCreateInfo, null, out PipelineCache).ThrowOnError(); _descriptorSetUpdater = new DescriptorSetUpdater(gd, this); _transformFeedbackBuffers = new BufferState[Constants.MaxTransformFeedbackBuffers]; _vertexBuffers = new VertexBufferState[Constants.MaxVertexBuffers + 1]; const int EmptyVbSize = 16; using var emptyVb = gd.BufferManager.Create(gd, EmptyVbSize); emptyVb.SetData(0, new byte[EmptyVbSize]); _vertexBuffers[0] = new VertexBufferState(emptyVb.GetBuffer(), 0, 0, EmptyVbSize, 0); _vertexBuffersDirty = ulong.MaxValue >> (64 - _vertexBuffers.Length); ClearScissor = new Rectangle<int>(0, 0, 0xffff, 0xffff); var defaultScale = new Vector4<float> { X = 1f, Y = 0f, Z = 0f, W = 0f }; new Span<Vector4<float>>(_renderScale).Fill(defaultScale); _newState.Initialize(); _newState.LineWidth = 1f; _newState.SamplesCount = 1; _storedBlend = new PipelineColorBlendAttachmentState[8]; } public void Initialize() { SupportBufferUpdater = new SupportBufferUpdater(Gd); SupportBufferUpdater.UpdateRenderScale(_renderScale, 0, SupportBuffer.RenderScaleMaxCount); QuadsToTrisPattern = new IndexBufferPattern(Gd, 4, 6, 0, new[] { 0, 1, 2, 0, 2, 3 }, 4, false); TriFanToTrisPattern = new IndexBufferPattern(Gd, 3, 3, 2, new[] { int.MinValue, -1, 0 }, 1, true); } public unsafe void Barrier() { MemoryBarrier memoryBarrier = new MemoryBarrier() { SType = StructureType.MemoryBarrier, SrcAccessMask = AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit, DstAccessMask = AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit }; Gd.Api.CmdPipelineBarrier( CommandBuffer, PipelineStageFlags.PipelineStageFragmentShaderBit, PipelineStageFlags.PipelineStageFragmentShaderBit, 0, 1, memoryBarrier, 0, null, 0, null); } public void BeginTransformFeedback(GAL.PrimitiveTopology topology) { _tfEnabled = true; } public void ClearBuffer(BufferHandle destination, int offset, int size, uint value) { EndRenderPass(); var dst = Gd.BufferManager.GetBuffer(CommandBuffer, destination, offset, size, true).Get(Cbs, offset, size).Value; BufferHolder.InsertBufferBarrier( Gd, Cbs.CommandBuffer, dst, BufferHolder.DefaultAccessFlags, AccessFlags.AccessTransferWriteBit, PipelineStageFlags.PipelineStageAllCommandsBit, PipelineStageFlags.PipelineStageTransferBit, offset, size); Gd.Api.CmdFillBuffer(CommandBuffer, dst, (ulong)offset, (ulong)size, value); BufferHolder.InsertBufferBarrier( Gd, Cbs.CommandBuffer, dst, AccessFlags.AccessTransferWriteBit, BufferHolder.DefaultAccessFlags, PipelineStageFlags.PipelineStageTransferBit, PipelineStageFlags.PipelineStageAllCommandsBit, offset, size); } public unsafe void ClearRenderTargetColor(int index, int layer, int layerCount, ColorF color) { if (FramebufferParams == null || !FramebufferParams.IsValidColorAttachment(index)) { return; } if (_renderPass == null) { CreateRenderPass(); } BeginRenderPass(); var clearValue = new ClearValue(new ClearColorValue(color.Red, color.Green, color.Blue, color.Alpha)); var attachment = new ClearAttachment(ImageAspectFlags.ImageAspectColorBit, (uint)index, clearValue); var clearRect = FramebufferParams.GetClearRect(ClearScissor, layer, layerCount); Gd.Api.CmdClearAttachments(CommandBuffer, 1, &attachment, 1, &clearRect); } public unsafe void ClearRenderTargetDepthStencil(int layer, int layerCount, float depthValue, bool depthMask, int stencilValue, int stencilMask) { // TODO: Use stencilMask (fully) if (FramebufferParams == null || !FramebufferParams.HasDepthStencil) { return; } if (_renderPass == null) { CreateRenderPass(); } BeginRenderPass(); var clearValue = new ClearValue(null, new ClearDepthStencilValue(depthValue, (uint)stencilValue)); var flags = depthMask ? ImageAspectFlags.ImageAspectDepthBit : 0; if (stencilMask != 0) { flags |= ImageAspectFlags.ImageAspectStencilBit; } var attachment = new ClearAttachment(flags, 0, clearValue); var clearRect = FramebufferParams.GetClearRect(ClearScissor, layer, layerCount); Gd.Api.CmdClearAttachments(CommandBuffer, 1, &attachment, 1, &clearRect); } public void CommandBufferBarrier() { // TODO: More specific barrier? Barrier(); } public void CopyBuffer(BufferHandle source, BufferHandle destination, int srcOffset, int dstOffset, int size) { EndRenderPass(); var src = Gd.BufferManager.GetBuffer(CommandBuffer, source, srcOffset, size, false); var dst = Gd.BufferManager.GetBuffer(CommandBuffer, destination, dstOffset, size, true); BufferHolder.Copy(Gd, Cbs, src, dst, srcOffset, dstOffset, size); } public void DirtyVertexBuffer(Auto<DisposableBuffer> buffer) { for (int i = 0; i < _vertexBuffers.Length; i++) { if (_vertexBuffers[i].BoundEquals(buffer)) { _vertexBuffersDirty |= 1UL << i; } } } public void DirtyIndexBuffer(Auto<DisposableBuffer> buffer) { if (_indexBuffer.BoundEquals(buffer)) { _needsIndexBufferRebind = true; } } public void DispatchCompute(int groupsX, int groupsY, int groupsZ) { if (!_program.IsLinked) { return; } EndRenderPass(); RecreatePipelineIfNeeded(PipelineBindPoint.Compute); Gd.Api.CmdDispatch(CommandBuffer, (uint)groupsX, (uint)groupsY, (uint)groupsZ); } public void Draw(int vertexCount, int instanceCount, int firstVertex, int firstInstance) { if (!_program.IsLinked) { return; } RecreatePipelineIfNeeded(PipelineBindPoint.Graphics); BeginRenderPass(); DrawCount++; if (Gd.TopologyUnsupported(_topology)) { // Temporarily bind a conversion pattern as an index buffer. _needsIndexBufferRebind = true; IndexBufferPattern pattern = _topology switch { GAL.PrimitiveTopology.Quads => QuadsToTrisPattern, GAL.PrimitiveTopology.TriangleFan => TriFanToTrisPattern, _ => throw new NotSupportedException($"Unsupported topology: {_topology}") }; BufferHandle handle = pattern.GetRepeatingBuffer(vertexCount, out int indexCount); var buffer = Gd.BufferManager.GetBuffer(CommandBuffer, handle, false); Gd.Api.CmdBindIndexBuffer(CommandBuffer, buffer.Get(Cbs, 0, indexCount * sizeof(int)).Value, 0, Silk.NET.Vulkan.IndexType.Uint32); BeginRenderPass(); // May have been interrupted to set buffer data. ResumeTransformFeedbackInternal(); Gd.Api.CmdDrawIndexed(CommandBuffer, (uint)indexCount, (uint)instanceCount, 0, firstVertex, (uint)firstInstance); } else { ResumeTransformFeedbackInternal(); Gd.Api.CmdDraw(CommandBuffer, (uint)vertexCount, (uint)instanceCount, (uint)firstVertex, (uint)firstInstance); } } private void UpdateIndexBufferPattern() { IndexBufferPattern pattern = null; if (Gd.TopologyUnsupported(_topology)) { pattern = _topology switch { GAL.PrimitiveTopology.Quads => QuadsToTrisPattern, GAL.PrimitiveTopology.TriangleFan => TriFanToTrisPattern, _ => throw new NotSupportedException($"Unsupported topology: {_topology}") }; } if (_indexBufferPattern != pattern) { _indexBufferPattern = pattern; _needsIndexBufferRebind = true; } } public void DrawIndexed(int indexCount, int instanceCount, int firstIndex, int firstVertex, int firstInstance) { if (!_program.IsLinked) { return; } UpdateIndexBufferPattern(); RecreatePipelineIfNeeded(PipelineBindPoint.Graphics); BeginRenderPass(); DrawCount++; if (_indexBufferPattern != null) { // Convert the index buffer into a supported topology. IndexBufferPattern pattern = _indexBufferPattern; int convertedCount = pattern.GetConvertedCount(indexCount); if (_needsIndexBufferRebind) { _indexBuffer.BindConvertedIndexBuffer(Gd, Cbs, firstIndex, indexCount, convertedCount, pattern); _needsIndexBufferRebind = false; } BeginRenderPass(); // May have been interrupted to set buffer data. ResumeTransformFeedbackInternal(); Gd.Api.CmdDrawIndexed(CommandBuffer, (uint)convertedCount, (uint)instanceCount, 0, firstVertex, (uint)firstInstance); } else { ResumeTransformFeedbackInternal(); Gd.Api.CmdDrawIndexed(CommandBuffer, (uint)indexCount, (uint)instanceCount, (uint)firstIndex, firstVertex, (uint)firstInstance); } } public void DrawTexture(ITexture texture, ISampler sampler, Extents2DF srcRegion, Extents2DF dstRegion) { if (texture is TextureView srcTexture) { SupportBufferUpdater.Commit(); var oldCullMode = _newState.CullMode; var oldStencilTestEnable = _newState.StencilTestEnable; var oldDepthTestEnable = _newState.DepthTestEnable; var oldDepthWriteEnable = _newState.DepthWriteEnable; var oldTopology = _newState.Topology; var oldViewports = DynamicState.Viewports; var oldViewportsCount = _newState.ViewportsCount; _newState.CullMode = CullModeFlags.CullModeNone; _newState.StencilTestEnable = false; _newState.DepthTestEnable = false; _newState.DepthWriteEnable = false; SignalStateChange(); Gd.HelperShader.DrawTexture( Gd, this, srcTexture, sampler, srcRegion, dstRegion); _newState.CullMode = oldCullMode; _newState.StencilTestEnable = oldStencilTestEnable; _newState.DepthTestEnable = oldDepthTestEnable; _newState.DepthWriteEnable = oldDepthWriteEnable; _newState.Topology = oldTopology; DynamicState.Viewports = oldViewports; DynamicState.ViewportsCount = (int)oldViewportsCount; DynamicState.SetViewportsDirty(); _newState.ViewportsCount = oldViewportsCount; SignalStateChange(); } } public void EndTransformFeedback() { PauseTransformFeedbackInternal(); _tfEnabled = false; } public bool IsCommandBufferActive(CommandBuffer cb) { return CommandBuffer.Handle == cb.Handle; } public void MultiDrawIndirectCount(BufferRange indirectBuffer, BufferRange parameterBuffer, int maxDrawCount, int stride) { if (!Gd.Capabilities.SupportsIndirectParameters) { throw new NotSupportedException(); } if (_program.LinkStatus != ProgramLinkStatus.Success) { return; } RecreatePipelineIfNeeded(PipelineBindPoint.Graphics); BeginRenderPass(); ResumeTransformFeedbackInternal(); DrawCount++; var buffer = Gd.BufferManager .GetBuffer(CommandBuffer, indirectBuffer.Handle, indirectBuffer.Offset, indirectBuffer.Size, true) .Get(Cbs, indirectBuffer.Offset, indirectBuffer.Size).Value; var countBuffer = Gd.BufferManager .GetBuffer(CommandBuffer, parameterBuffer.Handle, parameterBuffer.Offset, parameterBuffer.Size, true) .Get(Cbs, parameterBuffer.Offset, parameterBuffer.Size).Value; Gd.DrawIndirectCountApi.CmdDrawIndirectCount( CommandBuffer, buffer, (ulong)indirectBuffer.Offset, countBuffer, (ulong)parameterBuffer.Offset, (uint)maxDrawCount, (uint)stride); } public void MultiDrawIndexedIndirectCount(BufferRange indirectBuffer, BufferRange parameterBuffer, int maxDrawCount, int stride) { if (!Gd.Capabilities.SupportsIndirectParameters) { throw new NotSupportedException(); } if (_program.LinkStatus != ProgramLinkStatus.Success) { return; } RecreatePipelineIfNeeded(PipelineBindPoint.Graphics); BeginRenderPass(); ResumeTransformFeedbackInternal(); DrawCount++; var buffer = Gd.BufferManager .GetBuffer(CommandBuffer, indirectBuffer.Handle, parameterBuffer.Offset, parameterBuffer.Size, true) .Get(Cbs, indirectBuffer.Offset, indirectBuffer.Size).Value; var countBuffer = Gd.BufferManager .GetBuffer(CommandBuffer, parameterBuffer.Handle, parameterBuffer.Offset, parameterBuffer.Size, true) .Get(Cbs, parameterBuffer.Offset, parameterBuffer.Size).Value; Gd.DrawIndirectCountApi.CmdDrawIndexedIndirectCount( CommandBuffer, buffer, (ulong)indirectBuffer.Offset, countBuffer, (ulong)parameterBuffer.Offset, (uint)maxDrawCount, (uint)stride); } public void SetAlphaTest(bool enable, float reference, GAL.CompareOp op) { // This is currently handled using shader specialization, as Vulkan does not support alpha test. // In the future, we may want to use this to write the reference value into the support buffer, // to avoid creating one version of the shader per reference value used. } public void SetBlendState(int index, BlendDescriptor blend) { ref var vkBlend = ref _newState.Internal.ColorBlendAttachmentState[index]; if (blend.Enable) { vkBlend.BlendEnable = blend.Enable; vkBlend.SrcColorBlendFactor = blend.ColorSrcFactor.Convert(); vkBlend.DstColorBlendFactor = blend.ColorDstFactor.Convert(); vkBlend.ColorBlendOp = blend.ColorOp.Convert(); vkBlend.SrcAlphaBlendFactor = blend.AlphaSrcFactor.Convert(); vkBlend.DstAlphaBlendFactor = blend.AlphaDstFactor.Convert(); vkBlend.AlphaBlendOp = blend.AlphaOp.Convert(); } else { vkBlend = new PipelineColorBlendAttachmentState( colorWriteMask: vkBlend.ColorWriteMask); } if (vkBlend.ColorWriteMask == 0) { _storedBlend[index] = vkBlend; vkBlend = new PipelineColorBlendAttachmentState(); } _newState.BlendConstantR = blend.BlendConstant.Red; _newState.BlendConstantG = blend.BlendConstant.Green; _newState.BlendConstantB = blend.BlendConstant.Blue; _newState.BlendConstantA = blend.BlendConstant.Alpha; SignalStateChange(); } public void SetDepthBias(PolygonModeMask enables, float factor, float units, float clamp) { DynamicState.SetDepthBias(factor, units, clamp); _newState.DepthBiasEnable = enables != 0; SignalStateChange(); } public void SetDepthClamp(bool clamp) { _newState.DepthClampEnable = clamp; SignalStateChange(); } public void SetDepthMode(DepthMode mode) { // Currently this is emulated on the shader, because Vulkan had no support for changing the depth mode. // In the future, we may want to use the VK_EXT_depth_clip_control extension to change it here. } public void SetDepthTest(DepthTestDescriptor depthTest) { _newState.DepthTestEnable = depthTest.TestEnable; _newState.DepthWriteEnable = depthTest.WriteEnable; _newState.DepthCompareOp = depthTest.Func.Convert(); SignalStateChange(); } public void SetFaceCulling(bool enable, Face face) { _newState.CullMode = enable ? face.Convert() : CullModeFlags.CullModeNone; SignalStateChange(); } public void SetFrontFace(GAL.FrontFace frontFace) { _newState.FrontFace = frontFace.Convert(); SignalStateChange(); } public void SetImage(int binding, ITexture image, GAL.Format imageFormat) { _descriptorSetUpdater.SetImage(binding, image, imageFormat); } public void SetIndexBuffer(BufferRange buffer, GAL.IndexType type) { if (buffer.Handle != BufferHandle.Null) { _indexBuffer = new IndexBufferState(buffer.Handle, buffer.Offset, buffer.Size, type.Convert()); } else { _indexBuffer = IndexBufferState.Null; } _needsIndexBufferRebind = true; } public void SetLineParameters(float width, bool smooth) { _newState.LineWidth = width; SignalStateChange(); } public void SetLogicOpState(bool enable, LogicalOp op) { _newState.LogicOpEnable = enable; _newState.LogicOp = op.Convert(); SignalStateChange(); } public void SetMultisampleState(MultisampleDescriptor multisample) { _newState.AlphaToCoverageEnable = multisample.AlphaToCoverageEnable; _newState.AlphaToOneEnable = multisample.AlphaToOneEnable; SignalStateChange(); } public void SetOrigin(Origin origin) { // TODO. } public unsafe void SetPatchParameters(int vertices, ReadOnlySpan<float> defaultOuterLevel, ReadOnlySpan<float> defaultInnerLevel) { _newState.PatchControlPoints = (uint)vertices; SignalStateChange(); // TODO: Default levels (likely needs emulation on shaders?) } public void SetPointParameters(float size, bool isProgramPointSize, bool enablePointSprite, Origin origin) { // TODO. } public void SetPolygonMode(GAL.PolygonMode frontMode, GAL.PolygonMode backMode) { // TODO. } public void SetPrimitiveRestart(bool enable, int index) { _newState.PrimitiveRestartEnable = enable; // TODO: What to do about the index? SignalStateChange(); } public void SetPrimitiveTopology(GAL.PrimitiveTopology topology) { _topology = topology; var vkTopology = Gd.TopologyRemap(topology).Convert(); _newState.Topology = vkTopology; SignalStateChange(); } public void SetProgram(IProgram program) { var internalProgram = (ShaderCollection)program; var stages = internalProgram.GetInfos(); _program = internalProgram; _descriptorSetUpdater.SetProgram(internalProgram); _newState.PipelineLayout = internalProgram.PipelineLayout; _newState.StagesCount = (uint)stages.Length; stages.CopyTo(_newState.Stages.AsSpan().Slice(0, stages.Length)); SignalStateChange(); } protected virtual void SignalAttachmentChange() { } public void SetRasterizerDiscard(bool discard) { _newState.RasterizerDiscardEnable = discard; SignalStateChange(); } public void SetRenderTargetColorMasks(ReadOnlySpan<uint> componentMask) { int count = Math.Min(Constants.MaxRenderTargets, componentMask.Length); int writtenAttachments = 0; for (int i = 0; i < count; i++) { ref var vkBlend = ref _newState.Internal.ColorBlendAttachmentState[i]; var newMask = (ColorComponentFlags)componentMask[i]; // When color write mask is 0, remove all blend state to help the pipeline cache. // Restore it when the mask becomes non-zero. if (vkBlend.ColorWriteMask != newMask) { if (newMask == 0) { _storedBlend[i] = vkBlend; vkBlend = new PipelineColorBlendAttachmentState(); } else if (vkBlend.ColorWriteMask == 0) { vkBlend = _storedBlend[i]; } } vkBlend.ColorWriteMask = newMask; if (componentMask[i] != 0) { writtenAttachments++; } } SignalStateChange(); if (writtenAttachments != _writtenAttachmentCount) { SignalAttachmentChange(); _writtenAttachmentCount = writtenAttachments; } } public void SetRenderTargets(ITexture[] colors, ITexture depthStencil) { FramebufferParams?.UpdateModifications(); CreateFramebuffer(colors, depthStencil); CreateRenderPass(); SignalStateChange(); SignalAttachmentChange(); } public void SetRenderTargetScale(float scale) { _renderScale[0].X = scale; SupportBufferUpdater.UpdateRenderScale(_renderScale, 0, 1); // Just the first element. } public void SetScissors(ReadOnlySpan<Rectangle<int>> regions) { int maxScissors = Gd.Capabilities.SupportsMultiView ? Constants.MaxViewports : 1; int count = Math.Min(maxScissors, regions.Length); if (count > 0) { ClearScissor = regions[0]; } for (int i = 0; i < count; i++) { var region = regions[i]; var offset = new Offset2D(region.X, region.Y); var extent = new Extent2D((uint)region.Width, (uint)region.Height); DynamicState.SetScissor(i, new Rect2D(offset, extent)); } DynamicState.ScissorsCount = count; _newState.ScissorsCount = (uint)count; SignalStateChange(); } public void SetStencilTest(StencilTestDescriptor stencilTest) { DynamicState.SetStencilMasks( (uint)stencilTest.BackFuncMask, (uint)stencilTest.BackMask, (uint)stencilTest.BackFuncRef, (uint)stencilTest.FrontFuncMask, (uint)stencilTest.FrontMask, (uint)stencilTest.FrontFuncRef); _newState.StencilTestEnable = stencilTest.TestEnable; _newState.StencilBackFailOp = stencilTest.BackSFail.Convert(); _newState.StencilBackPassOp = stencilTest.BackDpPass.Convert(); _newState.StencilBackDepthFailOp = stencilTest.BackDpFail.Convert(); _newState.StencilBackCompareOp = stencilTest.BackFunc.Convert(); _newState.StencilFrontFailOp = stencilTest.FrontSFail.Convert(); _newState.StencilFrontPassOp = stencilTest.FrontDpPass.Convert(); _newState.StencilFrontDepthFailOp = stencilTest.FrontDpFail.Convert(); _newState.StencilFrontCompareOp = stencilTest.FrontFunc.Convert(); SignalStateChange(); } public void SetStorageBuffers(int first, ReadOnlySpan<BufferRange> buffers) { _descriptorSetUpdater.SetStorageBuffers(CommandBuffer, first, buffers); } public void SetStorageBuffers(int first, ReadOnlySpan<Auto<DisposableBuffer>> buffers) { _descriptorSetUpdater.SetStorageBuffers(CommandBuffer, first, buffers); } public void SetTextureAndSampler(ShaderStage stage, int binding, ITexture texture, ISampler sampler) { _descriptorSetUpdater.SetTextureAndSampler(Cbs, stage, binding, texture, sampler); } public void SetTransformFeedbackBuffers(ReadOnlySpan<BufferRange> buffers) { PauseTransformFeedbackInternal(); int count = Math.Min(Constants.MaxTransformFeedbackBuffers, buffers.Length); for (int i = 0; i < count; i++) { var range = buffers[i]; _transformFeedbackBuffers[i].Dispose(); if (range.Handle != BufferHandle.Null) { _transformFeedbackBuffers[i] = new BufferState(Gd.BufferManager.GetBuffer(CommandBuffer, range.Handle, range.Offset, range.Size, true), range.Offset, range.Size); _transformFeedbackBuffers[i].BindTransformFeedbackBuffer(Gd, Cbs, (uint)i); } else { _transformFeedbackBuffers[i] = BufferState.Null; } } } public void SetUniformBuffers(int first, ReadOnlySpan<BufferRange> buffers) { _descriptorSetUpdater.SetUniformBuffers(CommandBuffer, first, buffers); } public void SetUserClipDistance(int index, bool enableClip) { // TODO. } public void SetVertexAttribs(ReadOnlySpan<VertexAttribDescriptor> vertexAttribs) { var formatCapabilities = Gd.FormatCapabilities; Span<int> newVbScalarSizes = stackalloc int[Constants.MaxVertexBuffers]; int count = Math.Min(Constants.MaxVertexAttributes, vertexAttribs.Length); uint dirtyVbSizes = 0; for (int i = 0; i < count; i++) { var attribute = vertexAttribs[i]; var rawIndex = attribute.BufferIndex; var bufferIndex = attribute.IsZero ? 0 : rawIndex + 1; if (!attribute.IsZero) { newVbScalarSizes[rawIndex] = Math.Max(newVbScalarSizes[rawIndex], attribute.Format.GetScalarSize()); dirtyVbSizes |= 1u << rawIndex; } _newState.Internal.VertexAttributeDescriptions[i] = new VertexInputAttributeDescription( (uint)i, (uint)bufferIndex, formatCapabilities.ConvertToVertexVkFormat(attribute.Format), (uint)attribute.Offset); } while (dirtyVbSizes != 0) { int dirtyBit = BitOperations.TrailingZeroCount(dirtyVbSizes); ref var buffer = ref _vertexBuffers[dirtyBit + 1]; if (buffer.AttributeScalarAlignment != newVbScalarSizes[dirtyBit]) { _vertexBuffersDirty |= 1UL << (dirtyBit + 1); buffer.AttributeScalarAlignment = newVbScalarSizes[dirtyBit]; } dirtyVbSizes &= ~(1u << dirtyBit); } _newState.VertexAttributeDescriptionsCount = (uint)count; SignalStateChange(); } public void SetVertexBuffers(ReadOnlySpan<VertexBufferDescriptor> vertexBuffers) { int count = Math.Min(Constants.MaxVertexBuffers, vertexBuffers.Length); _newState.Internal.VertexBindingDescriptions[0] = new VertexInputBindingDescription(0, 0, VertexInputRate.Vertex); int validCount = 1; for (int i = 0; i < count; i++) { var vertexBuffer = vertexBuffers[i]; // TODO: Support divisor > 1 var inputRate = vertexBuffer.Divisor != 0 ? VertexInputRate.Instance : VertexInputRate.Vertex; if (vertexBuffer.Buffer.Handle != BufferHandle.Null) { var vb = Gd.BufferManager.GetBuffer(CommandBuffer, vertexBuffer.Buffer.Handle, false); if (vb != null) { int binding = i + 1; int descriptorIndex = validCount++; _newState.Internal.VertexBindingDescriptions[descriptorIndex] = new VertexInputBindingDescription( (uint)binding, (uint)vertexBuffer.Stride, inputRate); int vbSize = vertexBuffer.Buffer.Size; if (Gd.Vendor == Vendor.Amd && vertexBuffer.Stride > 0) { // AMD has a bug where if offset + stride * count is greater than // the size, then the last attribute will have the wrong value. // As a workaround, simply use the full buffer size. int remainder = vbSize % vertexBuffer.Stride; if (remainder != 0) { vbSize += vertexBuffer.Stride - remainder; } } ref var buffer = ref _vertexBuffers[binding]; int oldScalarAlign = buffer.AttributeScalarAlignment; buffer.Dispose(); if ((vertexBuffer.Stride % FormatExtensions.MaxBufferFormatScalarSize) == 0) { buffer = new VertexBufferState( vb, descriptorIndex, vertexBuffer.Buffer.Offset, vbSize, vertexBuffer.Stride); buffer.BindVertexBuffer(Gd, Cbs, (uint)binding, ref _newState); } else { // May need to be rewritten. Bind this buffer before draw. buffer = new VertexBufferState( vertexBuffer.Buffer.Handle, descriptorIndex, vertexBuffer.Buffer.Offset, vbSize, vertexBuffer.Stride); _vertexBuffersDirty |= 1UL << binding; } buffer.AttributeScalarAlignment = oldScalarAlign; } } } _newState.VertexBindingDescriptionsCount = (uint)validCount; SignalStateChange(); } public void SetViewports(ReadOnlySpan<GAL.Viewport> viewports, bool disableTransform) { int maxViewports = Gd.Capabilities.SupportsMultiView ? Constants.MaxViewports : 1; int count = Math.Min(maxViewports, viewports.Length); static float Clamp(float value) { return Math.Clamp(value, 0f, 1f); } for (int i = 0; i < count; i++) { var viewport = viewports[i]; DynamicState.SetViewport(i, new Silk.NET.Vulkan.Viewport( viewport.Region.X, viewport.Region.Y, viewport.Region.Width == 0f ? 1f : viewport.Region.Width, viewport.Region.Height == 0f ? 1f : viewport.Region.Height, Clamp(viewport.DepthNear), Clamp(viewport.DepthFar))); } DynamicState.ViewportsCount = count; float disableTransformF = disableTransform ? 1.0f : 0.0f; if (SupportBufferUpdater.Data.ViewportInverse.W != disableTransformF || disableTransform) { float scale = _renderScale[0].X; SupportBufferUpdater.UpdateViewportInverse(new Vector4<float> { X = scale * 2f / viewports[0].Region.Width, Y = scale * 2f / viewports[0].Region.Height, Z = 1, W = disableTransformF }); } _newState.ViewportsCount = (uint)count; SignalStateChange(); } public unsafe void TextureBarrier() { MemoryBarrier memoryBarrier = new MemoryBarrier() { SType = StructureType.MemoryBarrier, SrcAccessMask = AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit, DstAccessMask = AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit }; Gd.Api.CmdPipelineBarrier( CommandBuffer, PipelineStageFlags.PipelineStageFragmentShaderBit, PipelineStageFlags.PipelineStageFragmentShaderBit, 0, 1, memoryBarrier, 0, null, 0, null); } public void TextureBarrierTiled() { TextureBarrier(); } public void UpdateRenderScale(ReadOnlySpan<float> scales, int totalCount, int fragmentCount) { bool changed = false; for (int index = 0; index < totalCount; index++) { if (_renderScale[1 + index].X != scales[index]) { _renderScale[1 + index].X = scales[index]; changed = true; } } // Only update fragment count if there are scales after it for the vertex stage. if (fragmentCount != totalCount && fragmentCount != _fragmentScaleCount) { _fragmentScaleCount = fragmentCount; SupportBufferUpdater.UpdateFragmentRenderScaleCount(_fragmentScaleCount); } if (changed) { SupportBufferUpdater.UpdateRenderScale(_renderScale, 0, 1 + totalCount); } } protected void SignalCommandBufferChange() { _needsIndexBufferRebind = true; _needsTransformFeedbackBuffersRebind = true; _vertexBuffersDirty = ulong.MaxValue >> (64 - _vertexBuffers.Length); _descriptorSetUpdater.SignalCommandBufferChange(); DynamicState.ForceAllDirty(); _currentPipelineHandle = 0; } private void CreateFramebuffer(ITexture[] colors, ITexture depthStencil) { FramebufferParams = new FramebufferParams(Device, colors, depthStencil); UpdatePipelineAttachmentFormats(); _newState.SamplesCount = FramebufferParams.AttachmentSamples.Length != 0 ? FramebufferParams.AttachmentSamples[0] : 1; } protected void UpdatePipelineAttachmentFormats() { var dstAttachmentFormats = _newState.Internal.AttachmentFormats.AsSpan(); FramebufferParams.AttachmentFormats.CopyTo(dstAttachmentFormats); int maxAttachmentIndex = FramebufferParams.MaxColorAttachmentIndex + (FramebufferParams.HasDepthStencil ? 1 : 0); for (int i = FramebufferParams.AttachmentFormats.Length; i <= maxAttachmentIndex; i++) { dstAttachmentFormats[i] = 0; } _newState.ColorBlendAttachmentStateCount = (uint)(FramebufferParams.MaxColorAttachmentIndex + 1); _newState.HasDepthStencil = FramebufferParams.HasDepthStencil; } protected unsafe void CreateRenderPass() { const int MaxAttachments = Constants.MaxRenderTargets + 1; AttachmentDescription[] attachmentDescs = null; var subpass = new SubpassDescription() { PipelineBindPoint = PipelineBindPoint.Graphics }; AttachmentReference* attachmentReferences = stackalloc AttachmentReference[MaxAttachments]; var hasFramebuffer = FramebufferParams != null; if (hasFramebuffer && FramebufferParams.AttachmentsCount != 0) { attachmentDescs = new AttachmentDescription[FramebufferParams.AttachmentsCount]; for (int i = 0; i < FramebufferParams.AttachmentsCount; i++) { int bindIndex = FramebufferParams.AttachmentIndices[i]; attachmentDescs[i] = new AttachmentDescription( 0, FramebufferParams.AttachmentFormats[i], TextureStorage.ConvertToSampleCountFlags(FramebufferParams.AttachmentSamples[i]), AttachmentLoadOp.Load, AttachmentStoreOp.Store, AttachmentLoadOp.Load, AttachmentStoreOp.Store, ImageLayout.General, ImageLayout.General); } int colorAttachmentsCount = FramebufferParams.ColorAttachmentsCount; if (colorAttachmentsCount > MaxAttachments - 1) { colorAttachmentsCount = MaxAttachments - 1; } if (colorAttachmentsCount != 0) { int maxAttachmentIndex = FramebufferParams.MaxColorAttachmentIndex; subpass.ColorAttachmentCount = (uint)maxAttachmentIndex + 1; subpass.PColorAttachments = &attachmentReferences[0]; // Fill with VK_ATTACHMENT_UNUSED to cover any gaps. for (int i = 0; i <= maxAttachmentIndex; i++) { subpass.PColorAttachments[i] = new AttachmentReference(Vk.AttachmentUnused, ImageLayout.Undefined); } for (int i = 0; i < colorAttachmentsCount; i++) { int bindIndex = FramebufferParams.AttachmentIndices[i]; subpass.PColorAttachments[bindIndex] = new AttachmentReference((uint)i, ImageLayout.General); } } if (FramebufferParams.HasDepthStencil) { uint dsIndex = (uint)FramebufferParams.AttachmentsCount - 1; subpass.PDepthStencilAttachment = &attachmentReferences[MaxAttachments - 1]; *subpass.PDepthStencilAttachment = new AttachmentReference(dsIndex, ImageLayout.General); } } var subpassDependency = new SubpassDependency( 0, 0, PipelineStageFlags.PipelineStageAllGraphicsBit, PipelineStageFlags.PipelineStageAllGraphicsBit, AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit | AccessFlags.AccessColorAttachmentWriteBit, AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit | AccessFlags.AccessShaderReadBit, 0); fixed (AttachmentDescription* pAttachmentDescs = attachmentDescs) { var renderPassCreateInfo = new RenderPassCreateInfo() { SType = StructureType.RenderPassCreateInfo, PAttachments = pAttachmentDescs, AttachmentCount = attachmentDescs != null ? (uint)attachmentDescs.Length : 0, PSubpasses = &subpass, SubpassCount = 1, PDependencies = &subpassDependency, DependencyCount = 1 }; Gd.Api.CreateRenderPass(Device, renderPassCreateInfo, null, out var renderPass).ThrowOnError(); _renderPass?.Dispose(); _renderPass = new Auto<DisposableRenderPass>(new DisposableRenderPass(Gd.Api, Device, renderPass)); } EndRenderPass(); _framebuffer?.Dispose(); _framebuffer = hasFramebuffer ? FramebufferParams.Create(Gd.Api, Cbs, _renderPass) : null; } protected void SignalStateChange() { _stateDirty = true; } private void RecreatePipelineIfNeeded(PipelineBindPoint pbp) { DynamicState.ReplayIfDirty(Gd.Api, CommandBuffer); // Commit changes to the support buffer before drawing. SupportBufferUpdater.Commit(); if (_needsIndexBufferRebind && _indexBufferPattern == null) { _indexBuffer.BindIndexBuffer(Gd, Cbs); _needsIndexBufferRebind = false; } if (_needsTransformFeedbackBuffersRebind) { PauseTransformFeedbackInternal(); for (int i = 0; i < Constants.MaxTransformFeedbackBuffers; i++) { _transformFeedbackBuffers[i].BindTransformFeedbackBuffer(Gd, Cbs, (uint)i); } _needsTransformFeedbackBuffersRebind = false; } if (_vertexBuffersDirty != 0) { while (_vertexBuffersDirty != 0) { int i = BitOperations.TrailingZeroCount(_vertexBuffersDirty); _vertexBuffers[i].BindVertexBuffer(Gd, Cbs, (uint)i, ref _newState); _vertexBuffersDirty &= ~(1UL << i); } } if (_stateDirty || Pbp != pbp) { CreatePipeline(pbp); _stateDirty = false; Pbp = pbp; } _descriptorSetUpdater.UpdateAndBindDescriptorSets(Cbs, pbp); } private void CreatePipeline(PipelineBindPoint pbp) { // We can only create a pipeline if the have the shader stages set. if (_newState.Stages != null) { if (pbp == PipelineBindPoint.Graphics && _renderPass == null) { CreateRenderPass(); } var pipeline = pbp == PipelineBindPoint.Compute ? _newState.CreateComputePipeline(Gd, Device, _program, PipelineCache) : _newState.CreateGraphicsPipeline(Gd, Device, _program, PipelineCache, _renderPass.Get(Cbs).Value); ulong pipelineHandle = pipeline.GetUnsafe().Value.Handle; if (_currentPipelineHandle != pipelineHandle) { _currentPipelineHandle = pipelineHandle; Pipeline = pipeline; PauseTransformFeedbackInternal(); Gd.Api.CmdBindPipeline(CommandBuffer, pbp, Pipeline.Get(Cbs).Value); } } } private unsafe void BeginRenderPass() { if (!_renderPassActive) { var renderArea = new Rect2D(null, new Extent2D(FramebufferParams.Width, FramebufferParams.Height)); var clearValue = new ClearValue(); var renderPassBeginInfo = new RenderPassBeginInfo() { SType = StructureType.RenderPassBeginInfo, RenderPass = _renderPass.Get(Cbs).Value, Framebuffer = _framebuffer.Get(Cbs).Value, RenderArea = renderArea, PClearValues = &clearValue, ClearValueCount = 1 }; Gd.Api.CmdBeginRenderPass(CommandBuffer, renderPassBeginInfo, SubpassContents.Inline); _renderPassActive = true; } } public void EndRenderPass() { if (_renderPassActive) { PauseTransformFeedbackInternal(); Gd.Api.CmdEndRenderPass(CommandBuffer); SignalRenderPassEnd(); _renderPassActive = false; } } protected virtual void SignalRenderPassEnd() { } private void PauseTransformFeedbackInternal() { if (_tfEnabled && _tfActive) { EndTransformFeedbackInternal(); _tfActive = false; } } private void ResumeTransformFeedbackInternal() { if (_tfEnabled && !_tfActive) { BeginTransformFeedbackInternal(); _tfActive = true; } } private unsafe void BeginTransformFeedbackInternal() { Gd.TransformFeedbackApi.CmdBeginTransformFeedback(CommandBuffer, 0, 0, null, null); } private unsafe void EndTransformFeedbackInternal() { Gd.TransformFeedbackApi.CmdEndTransformFeedback(CommandBuffer, 0, 0, null, null); } protected virtual void Dispose(bool disposing) { if (disposing) { _renderPass?.Dispose(); _framebuffer?.Dispose(); _newState.Dispose(); _descriptorSetUpdater.Dispose(); for (int i = 0; i < _vertexBuffers.Length; i++) { _vertexBuffers[i].Dispose(); } for (int i = 0; i < _transformFeedbackBuffers.Length; i++) { _transformFeedbackBuffers[i].Dispose(); } Pipeline?.Dispose(); unsafe { Gd.Api.DestroyPipelineCache(Device, PipelineCache, null); } SupportBufferUpdater.Dispose(); } } public void Dispose() { Dispose(true); } } }