using ARMeilleure.Decoders.Optimizations; using ARMeilleure.Instructions; using ARMeilleure.Memory; using ARMeilleure.State; using System; using System.Collections.Generic; using System.Diagnostics; namespace ARMeilleure.Decoders { static class Decoder { // We define a limit on the number of instructions that a function may have, // this prevents functions being potentially too large, which would // take too long to compile and use too much memory. private const int MaxInstsPerFunction = 2500; // For lower code quality translation, we set a lower limit since we're blocking execution. private const int MaxInstsPerFunctionLowCq = 500; public static Block[] Decode(IMemoryManager memory, ulong address, ExecutionMode mode, bool highCq, bool singleBlock) { List<Block> blocks = new List<Block>(); Queue<Block> workQueue = new Queue<Block>(); Dictionary<ulong, Block> visited = new Dictionary<ulong, Block>(); Debug.Assert(MaxInstsPerFunctionLowCq <= MaxInstsPerFunction); int opsCount = 0; int instructionLimit = highCq ? MaxInstsPerFunction : MaxInstsPerFunctionLowCq; Block GetBlock(ulong blkAddress) { if (!visited.TryGetValue(blkAddress, out Block block)) { block = new Block(blkAddress); if ((singleBlock && visited.Count >= 1) || opsCount > instructionLimit || !memory.IsMapped(blkAddress)) { block.Exit = true; block.EndAddress = blkAddress; } workQueue.Enqueue(block); visited.Add(blkAddress, block); } return block; } GetBlock(address); while (workQueue.TryDequeue(out Block currBlock)) { // Check if the current block is inside another block. if (BinarySearch(blocks, currBlock.Address, out int nBlkIndex)) { Block nBlock = blocks[nBlkIndex]; if (nBlock.Address == currBlock.Address) { throw new InvalidOperationException("Found duplicate block address on the list."); } currBlock.Exit = false; nBlock.Split(currBlock); blocks.Insert(nBlkIndex + 1, currBlock); continue; } if (!currBlock.Exit) { // If we have a block after the current one, set the limit address. ulong limitAddress = ulong.MaxValue; if (nBlkIndex != blocks.Count) { Block nBlock = blocks[nBlkIndex]; int nextIndex = nBlkIndex + 1; if (nBlock.Address < currBlock.Address && nextIndex < blocks.Count) { limitAddress = blocks[nextIndex].Address; } else if (nBlock.Address > currBlock.Address) { limitAddress = blocks[nBlkIndex].Address; } } FillBlock(memory, mode, currBlock, limitAddress); opsCount += currBlock.OpCodes.Count; if (currBlock.OpCodes.Count != 0) { // Set child blocks. "Branch" is the block the branch instruction // points to (when taken), "Next" is the block at the next address, // executed when the branch is not taken. For Unconditional Branches // (except BL/BLR that are sub calls) or end of executable, Next is null. OpCode lastOp = currBlock.GetLastOp(); bool isCall = IsCall(lastOp); if (lastOp is IOpCodeBImm op && !isCall) { currBlock.Branch = GetBlock((ulong)op.Immediate); } if (!IsUnconditionalBranch(lastOp) || isCall) { currBlock.Next = GetBlock(currBlock.EndAddress); } } } // Insert the new block on the list (sorted by address). if (blocks.Count != 0) { Block nBlock = blocks[nBlkIndex]; blocks.Insert(nBlkIndex + (nBlock.Address < currBlock.Address ? 1 : 0), currBlock); } else { blocks.Add(currBlock); } } if (blocks.Count == 1 && blocks[0].OpCodes.Count == 0) { Debug.Assert(blocks[0].Exit); Debug.Assert(blocks[0].Address == blocks[0].EndAddress); throw new InvalidOperationException($"Decoded a single empty exit block. Entry point = 0x{address:X}."); } if (!singleBlock) { return TailCallRemover.RunPass(address, blocks); } else { return blocks.ToArray(); } } public static bool BinarySearch(List<Block> blocks, ulong address, out int index) { index = 0; int left = 0; int right = blocks.Count - 1; while (left <= right) { int size = right - left; int middle = left + (size >> 1); Block block = blocks[middle]; index = middle; if (address >= block.Address && address < block.EndAddress) { return true; } if (address < block.Address) { right = middle - 1; } else { left = middle + 1; } } return false; } private static void FillBlock( IMemoryManager memory, ExecutionMode mode, Block block, ulong limitAddress) { ulong address = block.Address; int itBlockSize = 0; OpCode opCode; do { if (address >= limitAddress && itBlockSize == 0) { break; } opCode = DecodeOpCode(memory, address, mode); block.OpCodes.Add(opCode); address += (ulong)opCode.OpCodeSizeInBytes; if (opCode is OpCodeT16IfThen it) { itBlockSize = it.IfThenBlockSize; } else if (itBlockSize > 0) { itBlockSize--; } } while (!(IsBranch(opCode) || IsException(opCode))); block.EndAddress = address; } private static bool IsBranch(OpCode opCode) { return opCode is OpCodeBImm || opCode is OpCodeBReg || IsAarch32Branch(opCode); } private static bool IsUnconditionalBranch(OpCode opCode) { return opCode is OpCodeBImmAl || opCode is OpCodeBReg || IsAarch32UnconditionalBranch(opCode); } private static bool IsAarch32UnconditionalBranch(OpCode opCode) { if (!(opCode is OpCode32 op)) { return false; } // Note: On ARM32, most instructions have conditional execution, // so there's no "Always" (unconditional) branch like on ARM64. // We need to check if the condition is "Always" instead. return IsAarch32Branch(op) && op.Cond >= Condition.Al; } private static bool IsAarch32Branch(OpCode opCode) { // Note: On ARM32, most ALU operations can write to R15 (PC), // so we must consider such operations as a branch in potential aswell. if (opCode is IOpCode32Alu opAlu && opAlu.Rd == RegisterAlias.Aarch32Pc) { return true; } // Same thing for memory operations. We have the cases where PC is a target // register (Rt == 15 or (mask & (1 << 15)) != 0), and cases where there is // a write back to PC (wback == true && Rn == 15), however the later may // be "undefined" depending on the CPU, so compilers should not produce that. if (opCode is IOpCode32Mem || opCode is IOpCode32MemMult) { int rt, rn; bool wBack, isLoad; if (opCode is IOpCode32Mem opMem) { rt = opMem.Rt; rn = opMem.Rn; wBack = opMem.WBack; isLoad = opMem.IsLoad; // For the dual load, we also need to take into account the // case were Rt2 == 15 (PC). if (rt == 14 && opMem.Instruction.Name == InstName.Ldrd) { rt = RegisterAlias.Aarch32Pc; } } else if (opCode is IOpCode32MemMult opMemMult) { const int pcMask = 1 << RegisterAlias.Aarch32Pc; rt = (opMemMult.RegisterMask & pcMask) != 0 ? RegisterAlias.Aarch32Pc : 0; rn = opMemMult.Rn; wBack = opMemMult.PostOffset != 0; isLoad = opMemMult.IsLoad; } else { throw new NotImplementedException($"The type \"{opCode.GetType().Name}\" is not implemented on the decoder."); } if ((rt == RegisterAlias.Aarch32Pc && isLoad) || (rn == RegisterAlias.Aarch32Pc && wBack)) { return true; } } // Explicit branch instructions. return opCode is IOpCode32BImm || opCode is IOpCode32BReg; } private static bool IsCall(OpCode opCode) { return opCode.Instruction.Name == InstName.Bl || opCode.Instruction.Name == InstName.Blr || opCode.Instruction.Name == InstName.Blx; } private static bool IsException(OpCode opCode) { return opCode.Instruction.Name == InstName.Brk || opCode.Instruction.Name == InstName.Svc || opCode.Instruction.Name == InstName.Trap || opCode.Instruction.Name == InstName.Und; } public static OpCode DecodeOpCode(IMemoryManager memory, ulong address, ExecutionMode mode) { int opCode = memory.Read<int>(address); InstDescriptor inst; OpCodeTable.MakeOp makeOp; if (mode == ExecutionMode.Aarch64) { (inst, makeOp) = OpCodeTable.GetInstA64(opCode); } else { if (mode == ExecutionMode.Aarch32Arm) { (inst, makeOp) = OpCodeTable.GetInstA32(opCode); } else /* if (mode == ExecutionMode.Aarch32Thumb) */ { (inst, makeOp) = OpCodeTable.GetInstT32(opCode); } } if (makeOp != null) { return makeOp(inst, address, opCode); } else { if (mode == ExecutionMode.Aarch32Thumb) { return new OpCodeT16(inst, address, opCode); } else { return new OpCode(inst, address, opCode); } } } } }