using ARMeilleure.State; using ARMeilleure.Translation; using NUnit.Framework; using Ryujinx.Cpu; using Ryujinx.Memory; using Ryujinx.Tests.Unicorn; using System; using MemoryPermission = Ryujinx.Tests.Unicorn.MemoryPermission; namespace Ryujinx.Tests.Cpu { [TestFixture] public class CpuTest { protected const ulong Size = 0x1000; protected const ulong CodeBaseAddress = 0x1000; protected const ulong DataBaseAddress = CodeBaseAddress + Size; private static bool Ignore_FpcrFz = false; private static bool Ignore_FpcrDn = false; private static bool IgnoreAllExcept_FpsrQc = false; private ulong _currAddress; private MemoryBlock _ram; private MemoryManager _memory; private ExecutionContext _context; private CpuContext _cpuContext; private static bool _unicornAvailable; private UnicornAArch64 _unicornEmu; private bool _usingMemory; static CpuTest() { _unicornAvailable = UnicornAArch64.IsAvailable(); if (!_unicornAvailable) { Console.WriteLine("WARNING: Could not find Unicorn."); } } [SetUp] public void Setup() { _currAddress = CodeBaseAddress; _ram = new MemoryBlock(Size * 2); _memory = new MemoryManager(_ram, 1ul << 16); _memory.Map(CodeBaseAddress, 0, Size * 2); _context = CpuContext.CreateExecutionContext(); Translator.IsReadyForTranslation.Set(); _cpuContext = new CpuContext(_memory); if (_unicornAvailable) { _unicornEmu = new UnicornAArch64(); _unicornEmu.MemoryMap(CodeBaseAddress, Size, MemoryPermission.READ | MemoryPermission.EXEC); _unicornEmu.MemoryMap(DataBaseAddress, Size, MemoryPermission.READ | MemoryPermission.WRITE); _unicornEmu.PC = CodeBaseAddress; } } [TearDown] public void Teardown() { _memory.Dispose(); _context.Dispose(); _ram.Dispose(); _memory = null; _context = null; _cpuContext = null; _unicornEmu = null; _usingMemory = false; } protected void Reset() { Teardown(); Setup(); } protected void Opcode(uint opcode) { _memory.Write(_currAddress, opcode); if (_unicornAvailable) { _unicornEmu.MemoryWrite32(_currAddress, opcode); } _currAddress += 4; } protected ExecutionContext GetContext() => _context; protected void SetContext(ulong x0 = 0, ulong x1 = 0, ulong x2 = 0, ulong x3 = 0, ulong x31 = 0, V128 v0 = default, V128 v1 = default, V128 v2 = default, V128 v3 = default, V128 v4 = default, V128 v5 = default, V128 v30 = default, V128 v31 = default, bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpcr = 0, int fpsr = 0) { _context.SetX(0, x0); _context.SetX(1, x1); _context.SetX(2, x2); _context.SetX(3, x3); _context.SetX(31, x31); _context.SetV(0, v0); _context.SetV(1, v1); _context.SetV(2, v2); _context.SetV(3, v3); _context.SetV(4, v4); _context.SetV(5, v5); _context.SetV(30, v30); _context.SetV(31, v31); _context.SetPstateFlag(PState.VFlag, overflow); _context.SetPstateFlag(PState.CFlag, carry); _context.SetPstateFlag(PState.ZFlag, zero); _context.SetPstateFlag(PState.NFlag, negative); _context.Fpcr = (FPCR)fpcr; _context.Fpsr = (FPSR)fpsr; if (_unicornAvailable) { _unicornEmu.X[0] = x0; _unicornEmu.X[1] = x1; _unicornEmu.X[2] = x2; _unicornEmu.X[3] = x3; _unicornEmu.SP = x31; _unicornEmu.Q[0] = V128ToSimdValue(v0); _unicornEmu.Q[1] = V128ToSimdValue(v1); _unicornEmu.Q[2] = V128ToSimdValue(v2); _unicornEmu.Q[3] = V128ToSimdValue(v3); _unicornEmu.Q[4] = V128ToSimdValue(v4); _unicornEmu.Q[5] = V128ToSimdValue(v5); _unicornEmu.Q[30] = V128ToSimdValue(v30); _unicornEmu.Q[31] = V128ToSimdValue(v31); _unicornEmu.OverflowFlag = overflow; _unicornEmu.CarryFlag = carry; _unicornEmu.ZeroFlag = zero; _unicornEmu.NegativeFlag = negative; _unicornEmu.Fpcr = fpcr; _unicornEmu.Fpsr = fpsr; } } protected void ExecuteOpcodes(bool runUnicorn = true) { _cpuContext.Execute(_context, CodeBaseAddress); if (_unicornAvailable && runUnicorn) { _unicornEmu.RunForCount((_currAddress - CodeBaseAddress - 4) / 4); } } protected ExecutionContext SingleOpcode(uint opcode, ulong x0 = 0, ulong x1 = 0, ulong x2 = 0, ulong x3 = 0, ulong x31 = 0, V128 v0 = default, V128 v1 = default, V128 v2 = default, V128 v3 = default, V128 v4 = default, V128 v5 = default, V128 v30 = default, V128 v31 = default, bool overflow = false, bool carry = false, bool zero = false, bool negative = false, int fpcr = 0, int fpsr = 0, bool runUnicorn = true) { if (Ignore_FpcrFz) { fpcr &= ~(1 << (int)Fpcr.Fz); } if (Ignore_FpcrDn) { fpcr &= ~(1 << (int)Fpcr.Dn); } Opcode(opcode); Opcode(0xD65F03C0); // RET SetContext(x0, x1, x2, x3, x31, v0, v1, v2, v3, v4, v5, v30, v31, overflow, carry, zero, negative, fpcr, fpsr); ExecuteOpcodes(runUnicorn); return GetContext(); } protected void SetWorkingMemory(ulong offset, byte[] data) { _memory.Write(DataBaseAddress + offset, data); if (_unicornAvailable) { _unicornEmu.MemoryWrite(DataBaseAddress + offset, data); } _usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too. } protected void SetWorkingMemory(ulong offset, byte data) { _memory.Write(DataBaseAddress + offset, data); if (_unicornAvailable) { _unicornEmu.MemoryWrite8(DataBaseAddress + offset, data); } _usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too. } /// <summary>Rounding Mode control field.</summary> public enum RMode { /// <summary>Round to Nearest mode.</summary> Rn, /// <summary>Round towards Plus Infinity mode.</summary> Rp, /// <summary>Round towards Minus Infinity mode.</summary> Rm, /// <summary>Round towards Zero mode.</summary> Rz }; /// <summary>Floating-point Control Register.</summary> protected enum Fpcr { /// <summary>Rounding Mode control field.</summary> RMode = 22, /// <summary>Flush-to-zero mode control bit.</summary> Fz = 24, /// <summary>Default NaN mode control bit.</summary> Dn = 25, /// <summary>Alternative half-precision control bit.</summary> Ahp = 26 } /// <summary>Floating-point Status Register.</summary> [Flags] protected enum Fpsr { None = 0, /// <summary>Invalid Operation cumulative floating-point exception bit.</summary> Ioc = 1 << 0, /// <summary>Divide by Zero cumulative floating-point exception bit.</summary> Dzc = 1 << 1, /// <summary>Overflow cumulative floating-point exception bit.</summary> Ofc = 1 << 2, /// <summary>Underflow cumulative floating-point exception bit.</summary> Ufc = 1 << 3, /// <summary>Inexact cumulative floating-point exception bit.</summary> Ixc = 1 << 4, /// <summary>Input Denormal cumulative floating-point exception bit.</summary> Idc = 1 << 7, /// <summary>Cumulative saturation bit.</summary> Qc = 1 << 27 } [Flags] protected enum FpSkips { None = 0, IfNaNS = 1, IfNaND = 2, IfUnderflow = 4, IfOverflow = 8 } protected enum FpTolerances { None, UpToOneUlpsS, UpToOneUlpsD } protected void CompareAgainstUnicorn( Fpsr fpsrMask = Fpsr.None, FpSkips fpSkips = FpSkips.None, FpTolerances fpTolerances = FpTolerances.None) { if (!_unicornAvailable) { return; } if (IgnoreAllExcept_FpsrQc) { fpsrMask &= Fpsr.Qc; } if (fpSkips != FpSkips.None) { ManageFpSkips(fpSkips); } Assert.That(_context.GetX(0), Is.EqualTo(_unicornEmu.X[0]), "X0"); Assert.That(_context.GetX(1), Is.EqualTo(_unicornEmu.X[1]), "X1"); Assert.That(_context.GetX(2), Is.EqualTo(_unicornEmu.X[2]), "X2"); Assert.That(_context.GetX(3), Is.EqualTo(_unicornEmu.X[3]), "X3"); Assert.That(_context.GetX(4), Is.EqualTo(_unicornEmu.X[4])); Assert.That(_context.GetX(5), Is.EqualTo(_unicornEmu.X[5])); Assert.That(_context.GetX(6), Is.EqualTo(_unicornEmu.X[6])); Assert.That(_context.GetX(7), Is.EqualTo(_unicornEmu.X[7])); Assert.That(_context.GetX(8), Is.EqualTo(_unicornEmu.X[8])); Assert.That(_context.GetX(9), Is.EqualTo(_unicornEmu.X[9])); Assert.That(_context.GetX(10), Is.EqualTo(_unicornEmu.X[10])); Assert.That(_context.GetX(11), Is.EqualTo(_unicornEmu.X[11])); Assert.That(_context.GetX(12), Is.EqualTo(_unicornEmu.X[12])); Assert.That(_context.GetX(13), Is.EqualTo(_unicornEmu.X[13])); Assert.That(_context.GetX(14), Is.EqualTo(_unicornEmu.X[14])); Assert.That(_context.GetX(15), Is.EqualTo(_unicornEmu.X[15])); Assert.That(_context.GetX(16), Is.EqualTo(_unicornEmu.X[16])); Assert.That(_context.GetX(17), Is.EqualTo(_unicornEmu.X[17])); Assert.That(_context.GetX(18), Is.EqualTo(_unicornEmu.X[18])); Assert.That(_context.GetX(19), Is.EqualTo(_unicornEmu.X[19])); Assert.That(_context.GetX(20), Is.EqualTo(_unicornEmu.X[20])); Assert.That(_context.GetX(21), Is.EqualTo(_unicornEmu.X[21])); Assert.That(_context.GetX(22), Is.EqualTo(_unicornEmu.X[22])); Assert.That(_context.GetX(23), Is.EqualTo(_unicornEmu.X[23])); Assert.That(_context.GetX(24), Is.EqualTo(_unicornEmu.X[24])); Assert.That(_context.GetX(25), Is.EqualTo(_unicornEmu.X[25])); Assert.That(_context.GetX(26), Is.EqualTo(_unicornEmu.X[26])); Assert.That(_context.GetX(27), Is.EqualTo(_unicornEmu.X[27])); Assert.That(_context.GetX(28), Is.EqualTo(_unicornEmu.X[28])); Assert.That(_context.GetX(29), Is.EqualTo(_unicornEmu.X[29])); Assert.That(_context.GetX(30), Is.EqualTo(_unicornEmu.X[30])); Assert.That(_context.GetX(31), Is.EqualTo(_unicornEmu.SP), "X31"); if (fpTolerances == FpTolerances.None) { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]), "V0"); } else { ManageFpTolerances(fpTolerances); } Assert.That(V128ToSimdValue(_context.GetV(1)), Is.EqualTo(_unicornEmu.Q[1]), "V1"); Assert.That(V128ToSimdValue(_context.GetV(2)), Is.EqualTo(_unicornEmu.Q[2]), "V2"); Assert.That(V128ToSimdValue(_context.GetV(3)), Is.EqualTo(_unicornEmu.Q[3]), "V3"); Assert.That(V128ToSimdValue(_context.GetV(4)), Is.EqualTo(_unicornEmu.Q[4]), "V4"); Assert.That(V128ToSimdValue(_context.GetV(5)), Is.EqualTo(_unicornEmu.Q[5]), "V5"); Assert.That(V128ToSimdValue(_context.GetV(6)), Is.EqualTo(_unicornEmu.Q[6])); Assert.That(V128ToSimdValue(_context.GetV(7)), Is.EqualTo(_unicornEmu.Q[7])); Assert.That(V128ToSimdValue(_context.GetV(8)), Is.EqualTo(_unicornEmu.Q[8])); Assert.That(V128ToSimdValue(_context.GetV(9)), Is.EqualTo(_unicornEmu.Q[9])); Assert.That(V128ToSimdValue(_context.GetV(10)), Is.EqualTo(_unicornEmu.Q[10])); Assert.That(V128ToSimdValue(_context.GetV(11)), Is.EqualTo(_unicornEmu.Q[11])); Assert.That(V128ToSimdValue(_context.GetV(12)), Is.EqualTo(_unicornEmu.Q[12])); Assert.That(V128ToSimdValue(_context.GetV(13)), Is.EqualTo(_unicornEmu.Q[13])); Assert.That(V128ToSimdValue(_context.GetV(14)), Is.EqualTo(_unicornEmu.Q[14])); Assert.That(V128ToSimdValue(_context.GetV(15)), Is.EqualTo(_unicornEmu.Q[15])); Assert.That(V128ToSimdValue(_context.GetV(16)), Is.EqualTo(_unicornEmu.Q[16])); Assert.That(V128ToSimdValue(_context.GetV(17)), Is.EqualTo(_unicornEmu.Q[17])); Assert.That(V128ToSimdValue(_context.GetV(18)), Is.EqualTo(_unicornEmu.Q[18])); Assert.That(V128ToSimdValue(_context.GetV(19)), Is.EqualTo(_unicornEmu.Q[19])); Assert.That(V128ToSimdValue(_context.GetV(20)), Is.EqualTo(_unicornEmu.Q[20])); Assert.That(V128ToSimdValue(_context.GetV(21)), Is.EqualTo(_unicornEmu.Q[21])); Assert.That(V128ToSimdValue(_context.GetV(22)), Is.EqualTo(_unicornEmu.Q[22])); Assert.That(V128ToSimdValue(_context.GetV(23)), Is.EqualTo(_unicornEmu.Q[23])); Assert.That(V128ToSimdValue(_context.GetV(24)), Is.EqualTo(_unicornEmu.Q[24])); Assert.That(V128ToSimdValue(_context.GetV(25)), Is.EqualTo(_unicornEmu.Q[25])); Assert.That(V128ToSimdValue(_context.GetV(26)), Is.EqualTo(_unicornEmu.Q[26])); Assert.That(V128ToSimdValue(_context.GetV(27)), Is.EqualTo(_unicornEmu.Q[27])); Assert.That(V128ToSimdValue(_context.GetV(28)), Is.EqualTo(_unicornEmu.Q[28])); Assert.That(V128ToSimdValue(_context.GetV(29)), Is.EqualTo(_unicornEmu.Q[29])); Assert.That(V128ToSimdValue(_context.GetV(30)), Is.EqualTo(_unicornEmu.Q[30]), "V30"); Assert.That(V128ToSimdValue(_context.GetV(31)), Is.EqualTo(_unicornEmu.Q[31]), "V31"); Assert.Multiple(() => { Assert.That(_context.GetPstateFlag(PState.VFlag), Is.EqualTo(_unicornEmu.OverflowFlag), "VFlag"); Assert.That(_context.GetPstateFlag(PState.CFlag), Is.EqualTo(_unicornEmu.CarryFlag), "CFlag"); Assert.That(_context.GetPstateFlag(PState.ZFlag), Is.EqualTo(_unicornEmu.ZeroFlag), "ZFlag"); Assert.That(_context.GetPstateFlag(PState.NFlag), Is.EqualTo(_unicornEmu.NegativeFlag), "NFlag"); }); Assert.That((int)_context.Fpcr, Is.EqualTo(_unicornEmu.Fpcr), "Fpcr"); Assert.That((int)_context.Fpsr & (int)fpsrMask, Is.EqualTo(_unicornEmu.Fpsr & (int)fpsrMask), "Fpsr"); if (_usingMemory) { byte[] mem = _memory.GetSpan(DataBaseAddress, (int)Size).ToArray(); byte[] unicornMem = _unicornEmu.MemoryRead(DataBaseAddress, Size); Assert.That(mem, Is.EqualTo(unicornMem), "Data"); } } private void ManageFpSkips(FpSkips fpSkips) { if (fpSkips.HasFlag(FpSkips.IfNaNS)) { if (float.IsNaN(_unicornEmu.Q[0].AsFloat())) { Assert.Ignore("NaN test."); } } else if (fpSkips.HasFlag(FpSkips.IfNaND)) { if (double.IsNaN(_unicornEmu.Q[0].AsDouble())) { Assert.Ignore("NaN test."); } } if (fpSkips.HasFlag(FpSkips.IfUnderflow)) { if ((_unicornEmu.Fpsr & (int)Fpsr.Ufc) != 0) { Assert.Ignore("Underflow test."); } } if (fpSkips.HasFlag(FpSkips.IfOverflow)) { if ((_unicornEmu.Fpsr & (int)Fpsr.Ofc) != 0) { Assert.Ignore("Overflow test."); } } } private void ManageFpTolerances(FpTolerances fpTolerances) { bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f); bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d); if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(V128ToSimdValue(_context.GetV(0))).IsSuccess) { if (fpTolerances == FpTolerances.UpToOneUlpsS) { if (IsNormalOrSubnormalS(_unicornEmu.Q[0].AsFloat()) && IsNormalOrSubnormalS(_context.GetV(0).As<float>())) { Assert.Multiple(() => { Assert.That (_context.GetV(0).Extract<float>(0), Is.EqualTo(_unicornEmu.Q[0].GetFloat(0)).Within(1).Ulps, "V0[0]"); Assert.That (_context.GetV(0).Extract<float>(1), Is.EqualTo(_unicornEmu.Q[0].GetFloat(1)).Within(1).Ulps, "V0[1]"); Assert.That (_context.GetV(0).Extract<float>(2), Is.EqualTo(_unicornEmu.Q[0].GetFloat(2)).Within(1).Ulps, "V0[2]"); Assert.That (_context.GetV(0).Extract<float>(3), Is.EqualTo(_unicornEmu.Q[0].GetFloat(3)).Within(1).Ulps, "V0[3]"); }); Console.WriteLine(fpTolerances); } else { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0])); } } if (fpTolerances == FpTolerances.UpToOneUlpsD) { if (IsNormalOrSubnormalD(_unicornEmu.Q[0].AsDouble()) && IsNormalOrSubnormalD(_context.GetV(0).As<double>())) { Assert.Multiple(() => { Assert.That (_context.GetV(0).Extract<double>(0), Is.EqualTo(_unicornEmu.Q[0].GetDouble(0)).Within(1).Ulps, "V0[0]"); Assert.That (_context.GetV(0).Extract<double>(1), Is.EqualTo(_unicornEmu.Q[0].GetDouble(1)).Within(1).Ulps, "V0[1]"); }); Console.WriteLine(fpTolerances); } else { Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0])); } } } } private static SimdValue V128ToSimdValue(V128 value) { return new SimdValue(value.Extract<ulong>(0), value.Extract<ulong>(1)); } protected static V128 MakeVectorScalar(float value) => new V128(value); protected static V128 MakeVectorScalar(double value) => new V128(value); protected static V128 MakeVectorE0(ulong e0) => new V128(e0, 0); protected static V128 MakeVectorE1(ulong e1) => new V128(0, e1); protected static V128 MakeVectorE0E1(ulong e0, ulong e1) => new V128(e0, e1); protected static ulong GetVectorE0(V128 vector) => vector.Extract<ulong>(0); protected static ulong GetVectorE1(V128 vector) => vector.Extract<ulong>(1); protected static ushort GenNormalH() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUShort(); while (( rnd & 0x7C00u) == 0u || (~rnd & 0x7C00u) == 0u); return (ushort)rnd; } protected static ushort GenSubnormalH() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUShort(); while ((rnd & 0x03FFu) == 0u); return (ushort)(rnd & 0x83FFu); } protected static uint GenNormalS() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUInt(); while (( rnd & 0x7F800000u) == 0u || (~rnd & 0x7F800000u) == 0u); return rnd; } protected static uint GenSubnormalS() { uint rnd; do rnd = TestContext.CurrentContext.Random.NextUInt(); while ((rnd & 0x007FFFFFu) == 0u); return rnd & 0x807FFFFFu; } protected static ulong GenNormalD() { ulong rnd; do rnd = TestContext.CurrentContext.Random.NextULong(); while (( rnd & 0x7FF0000000000000ul) == 0ul || (~rnd & 0x7FF0000000000000ul) == 0ul); return rnd; } protected static ulong GenSubnormalD() { ulong rnd; do rnd = TestContext.CurrentContext.Random.NextULong(); while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul); return rnd & 0x800FFFFFFFFFFFFFul; } } }