using System; using System.Buffers.Binary; using System.Diagnostics; using System.Numerics; using System.Runtime.CompilerServices; using System.Runtime.Intrinsics; using System.Runtime.Intrinsics.X86; namespace Ryujinx.Common { public static class XXHash128 { private const int StripeLen = 64; private const int AccNb = StripeLen / sizeof(ulong); private const int SecretConsumeRate = 8; private const int SecretLastAccStart = 7; private const int SecretMergeAccsStart = 11; private const int SecretSizeMin = 136; private const int MidSizeStartOffset = 3; private const int MidSizeLastOffset = 17; private const uint Prime32_1 = 0x9E3779B1U; private const uint Prime32_2 = 0x85EBCA77U; private const uint Prime32_3 = 0xC2B2AE3DU; private const uint Prime32_4 = 0x27D4EB2FU; private const uint Prime32_5 = 0x165667B1U; private const ulong Prime64_1 = 0x9E3779B185EBCA87UL; private const ulong Prime64_2 = 0xC2B2AE3D27D4EB4FUL; private const ulong Prime64_3 = 0x165667B19E3779F9UL; private const ulong Prime64_4 = 0x85EBCA77C2B2AE63UL; private const ulong Prime64_5 = 0x27D4EB2F165667C5UL; private static readonly ulong[] Xxh3InitAcc = new ulong[] { Prime32_3, Prime64_1, Prime64_2, Prime64_3, Prime64_4, Prime32_2, Prime64_5, Prime32_1 }; private static readonly byte[] Xxh3KSecret = new byte[] { 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e }; [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Mult32To64(ulong x, ulong y) { return (ulong)(uint)x * (ulong)(uint)y; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static Hash128 Mult64To128(ulong lhs, ulong rhs) { ulong high = Math.BigMul(lhs, rhs, out ulong low); return new Hash128 { Low = low, High = high }; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Mul128Fold64(ulong lhs, ulong rhs) { Hash128 product = Mult64To128(lhs, rhs); return product.Low ^ product.High; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong XorShift64(ulong v64, int shift) { Debug.Assert(0 <= shift && shift < 64); return v64 ^ (v64 >> shift); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Xxh3Avalanche(ulong h64) { h64 = XorShift64(h64, 37); h64 *= 0x165667919E3779F9UL; h64 = XorShift64(h64, 32); return h64; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Xxh64Avalanche(ulong h64) { h64 ^= h64 >> 33; h64 *= Prime64_2; h64 ^= h64 >> 29; h64 *= Prime64_3; h64 ^= h64 >> 32; return h64; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private unsafe static void Xxh3Accumulate512(Span<ulong> acc, ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret) { if (Avx2.IsSupported) { fixed (ulong* pAcc = acc) { fixed (byte* pInput = input, pSecret = secret) { Vector256<ulong>* xAcc = (Vector256<ulong>*)pAcc; Vector256<byte>* xInput = (Vector256<byte>*)pInput; Vector256<byte>* xSecret = (Vector256<byte>*)pSecret; for (ulong i = 0; i < StripeLen / 32; i++) { Vector256<byte> dataVec = xInput[i]; Vector256<byte> keyVec = xSecret[i]; Vector256<byte> dataKey = Avx2.Xor(dataVec, keyVec); Vector256<uint> dataKeyLo = Avx2.Shuffle(dataKey.AsUInt32(), 0b00110001); Vector256<ulong> product = Avx2.Multiply(dataKey.AsUInt32(), dataKeyLo); Vector256<uint> dataSwap = Avx2.Shuffle(dataVec.AsUInt32(), 0b01001110); Vector256<ulong> sum = Avx2.Add(xAcc[i], dataSwap.AsUInt64()); xAcc[i] = Avx2.Add(product, sum); } } } } else if (Sse2.IsSupported) { fixed (ulong* pAcc = acc) { fixed (byte* pInput = input, pSecret = secret) { Vector128<ulong>* xAcc = (Vector128<ulong>*)pAcc; Vector128<byte>* xInput = (Vector128<byte>*)pInput; Vector128<byte>* xSecret = (Vector128<byte>*)pSecret; for (ulong i = 0; i < StripeLen / 16; i++) { Vector128<byte> dataVec = xInput[i]; Vector128<byte> keyVec = xSecret[i]; Vector128<byte> dataKey = Sse2.Xor(dataVec, keyVec); Vector128<uint> dataKeyLo = Sse2.Shuffle(dataKey.AsUInt32(), 0b00110001); Vector128<ulong> product = Sse2.Multiply(dataKey.AsUInt32(), dataKeyLo); Vector128<uint> dataSwap = Sse2.Shuffle(dataVec.AsUInt32(), 0b01001110); Vector128<ulong> sum = Sse2.Add(xAcc[i], dataSwap.AsUInt64()); xAcc[i] = Sse2.Add(product, sum); } } } } else { for (int i = 0; i < AccNb; i++) { ulong dataVal = BinaryPrimitives.ReadUInt64LittleEndian(input.Slice(i * sizeof(ulong))); ulong dataKey = dataVal ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(i * sizeof(ulong))); acc[i ^ 1] += dataVal; acc[i] += Mult32To64((uint)dataKey, dataKey >> 32); } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private unsafe static void Xxh3ScrambleAcc(Span<ulong> acc, ReadOnlySpan<byte> secret) { if (Avx2.IsSupported) { fixed (ulong* pAcc = acc) { fixed (byte* pSecret = secret) { Vector256<uint> prime32 = Vector256.Create(Prime32_1); Vector256<ulong>* xAcc = (Vector256<ulong>*)pAcc; Vector256<byte>* xSecret = (Vector256<byte>*)pSecret; for (ulong i = 0; i < StripeLen / 32; i++) { Vector256<ulong> accVec = xAcc[i]; Vector256<ulong> shifted = Avx2.ShiftRightLogical(accVec, 47); Vector256<ulong> dataVec = Avx2.Xor(accVec, shifted); Vector256<byte> keyVec = xSecret[i]; Vector256<uint> dataKey = Avx2.Xor(dataVec.AsUInt32(), keyVec.AsUInt32()); Vector256<uint> dataKeyHi = Avx2.Shuffle(dataKey.AsUInt32(), 0b00110001); Vector256<ulong> prodLo = Avx2.Multiply(dataKey, prime32); Vector256<ulong> prodHi = Avx2.Multiply(dataKeyHi, prime32); xAcc[i] = Avx2.Add(prodLo, Avx2.ShiftLeftLogical(prodHi, 32)); } } } } else if (Sse2.IsSupported) { fixed (ulong* pAcc = acc) { fixed (byte* pSecret = secret) { Vector128<uint> prime32 = Vector128.Create(Prime32_1); Vector128<ulong>* xAcc = (Vector128<ulong>*)pAcc; Vector128<byte>* xSecret = (Vector128<byte>*)pSecret; for (ulong i = 0; i < StripeLen / 16; i++) { Vector128<ulong> accVec = xAcc[i]; Vector128<ulong> shifted = Sse2.ShiftRightLogical(accVec, 47); Vector128<ulong> dataVec = Sse2.Xor(accVec, shifted); Vector128<byte> keyVec = xSecret[i]; Vector128<uint> dataKey = Sse2.Xor(dataVec.AsUInt32(), keyVec.AsUInt32()); Vector128<uint> dataKeyHi = Sse2.Shuffle(dataKey.AsUInt32(), 0b00110001); Vector128<ulong> prodLo = Sse2.Multiply(dataKey, prime32); Vector128<ulong> prodHi = Sse2.Multiply(dataKeyHi, prime32); xAcc[i] = Sse2.Add(prodLo, Sse2.ShiftLeftLogical(prodHi, 32)); } } } } else { for (int i = 0; i < AccNb; i++) { ulong key64 = BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(i * sizeof(ulong))); ulong acc64 = acc[i]; acc64 = XorShift64(acc64, 47); acc64 ^= key64; acc64 *= Prime32_1; acc[i] = acc64; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void Xxh3Accumulate(Span<ulong> acc, ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, int nbStripes) { for (int n = 0; n < nbStripes; n++) { ReadOnlySpan<byte> inData = input.Slice(n * StripeLen); Xxh3Accumulate512(acc, inData, secret.Slice(n * SecretConsumeRate)); } } private static void Xxh3HashLongInternalLoop(Span<ulong> acc, ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret) { int nbStripesPerBlock = (secret.Length - StripeLen) / SecretConsumeRate; int blockLen = StripeLen * nbStripesPerBlock; int nbBlocks = (input.Length - 1) / blockLen; Debug.Assert(secret.Length >= SecretSizeMin); for (int n = 0; n < nbBlocks; n++) { Xxh3Accumulate(acc, input.Slice(n * blockLen), secret, nbStripesPerBlock); Xxh3ScrambleAcc(acc, secret.Slice(secret.Length - StripeLen)); } Debug.Assert(input.Length > StripeLen); int nbStripes = (input.Length - 1 - (blockLen * nbBlocks)) / StripeLen; Debug.Assert(nbStripes <= (secret.Length / SecretConsumeRate)); Xxh3Accumulate(acc, input.Slice(nbBlocks * blockLen), secret, nbStripes); ReadOnlySpan<byte> p = input.Slice(input.Length - StripeLen); Xxh3Accumulate512(acc, p, secret.Slice(secret.Length - StripeLen - SecretLastAccStart)); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Xxh3Mix2Accs(Span<ulong> acc, ReadOnlySpan<byte> secret) { return Mul128Fold64( acc[0] ^ BinaryPrimitives.ReadUInt64LittleEndian(secret), acc[1] ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(8))); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Xxh3MergeAccs(Span<ulong> acc, ReadOnlySpan<byte> secret, ulong start) { ulong result64 = start; for (int i = 0; i < 4; i++) { result64 += Xxh3Mix2Accs(acc.Slice(2 * i), secret.Slice(16 * i)); } return Xxh3Avalanche(result64); } [SkipLocalsInit] private static Hash128 Xxh3HashLong128bInternal(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret) { Span<ulong> acc = stackalloc ulong[AccNb]; Xxh3InitAcc.CopyTo(acc); Xxh3HashLongInternalLoop(acc, input, secret); Debug.Assert(acc.Length == 8); Debug.Assert(secret.Length >= acc.Length * sizeof(ulong) + SecretMergeAccsStart); return new Hash128 { Low = Xxh3MergeAccs(acc, secret.Slice(SecretMergeAccsStart), (ulong)input.Length * Prime64_1), High = Xxh3MergeAccs( acc, secret.Slice(secret.Length - acc.Length * sizeof(ulong) - SecretMergeAccsStart), ~((ulong)input.Length * Prime64_2)) }; } private static Hash128 Xxh3Len1To3128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed) { Debug.Assert(1 <= input.Length && input.Length <= 3); byte c1 = input[0]; byte c2 = input[input.Length >> 1]; byte c3 = input[^1]; uint combinedL = ((uint)c1 << 16) | ((uint)c2 << 24) | c3 | ((uint)input.Length << 8); uint combinedH = BitOperations.RotateLeft(BinaryPrimitives.ReverseEndianness(combinedL), 13); ulong bitFlipL = (BinaryPrimitives.ReadUInt32LittleEndian(secret) ^ BinaryPrimitives.ReadUInt32LittleEndian(secret.Slice(4))) + seed; ulong bitFlipH = (BinaryPrimitives.ReadUInt32LittleEndian(secret.Slice(8)) ^ BinaryPrimitives.ReadUInt32LittleEndian(secret.Slice(12))) - seed; ulong keyedLo = combinedL ^ bitFlipL; ulong keyedHi = combinedH ^ bitFlipH; return new Hash128 { Low = Xxh64Avalanche(keyedLo), High = Xxh64Avalanche(keyedHi) }; } private static Hash128 Xxh3Len4To8128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed) { Debug.Assert(4 <= input.Length && input.Length <= 8); seed ^= BinaryPrimitives.ReverseEndianness((uint)seed) << 32; uint inputLo = BinaryPrimitives.ReadUInt32LittleEndian(input); uint inputHi = BinaryPrimitives.ReadUInt32LittleEndian(input.Slice(input.Length - 4)); ulong input64 = inputLo + ((ulong)inputHi << 32); ulong bitFlip = (BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(16)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(24))) + seed; ulong keyed = input64 ^ bitFlip; Hash128 m128 = Mult64To128(keyed, Prime64_1 + ((ulong)input.Length << 2)); m128.High += m128.Low << 1; m128.Low ^= m128.High >> 3; m128.Low = XorShift64(m128.Low, 35); m128.Low *= 0x9FB21C651E98DF25UL; m128.Low = XorShift64(m128.Low, 28); m128.High = Xxh3Avalanche(m128.High); return m128; } private static Hash128 Xxh3Len9To16128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed) { Debug.Assert(9 <= input.Length && input.Length <= 16); ulong bitFlipL = (BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(32)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(40))) - seed; ulong bitFlipH = (BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(48)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(56))) + seed; ulong inputLo = BinaryPrimitives.ReadUInt64LittleEndian(input); ulong inputHi = BinaryPrimitives.ReadUInt64LittleEndian(input.Slice(input.Length - 8)); Hash128 m128 = Mult64To128(inputLo ^ inputHi ^ bitFlipL, Prime64_1); m128.Low += ((ulong)input.Length - 1) << 54; inputHi ^= bitFlipH; m128.High += inputHi + Mult32To64((uint)inputHi, Prime32_2 - 1); m128.Low ^= BinaryPrimitives.ReverseEndianness(m128.High); Hash128 h128 = Mult64To128(m128.Low, Prime64_2); h128.High += m128.High * Prime64_2; h128.Low = Xxh3Avalanche(h128.Low); h128.High = Xxh3Avalanche(h128.High); return h128; } private static Hash128 Xxh3Len0To16128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed) { Debug.Assert(input.Length <= 16); if (input.Length > 8) { return Xxh3Len9To16128b(input, secret, seed); } else if (input.Length >= 4) { return Xxh3Len4To8128b(input, secret, seed); } else if (input.Length != 0) { return Xxh3Len1To3128b(input, secret, seed); } else { Hash128 h128 = new Hash128(); ulong bitFlipL = BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(64)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(72)); ulong bitFlipH = BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(80)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(88)); h128.Low = Xxh64Avalanche(seed ^ bitFlipL); h128.High = Xxh64Avalanche(seed ^ bitFlipH); return h128; } } private static ulong Xxh3Mix16b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed) { ulong inputLo = BinaryPrimitives.ReadUInt64LittleEndian(input); ulong inputHi = BinaryPrimitives.ReadUInt64LittleEndian(input.Slice(8)); return Mul128Fold64( inputLo ^ (BinaryPrimitives.ReadUInt64LittleEndian(secret) + seed), inputHi ^ (BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(8)) - seed)); } private static Hash128 Xxh128Mix32b(Hash128 acc, ReadOnlySpan<byte> input, ReadOnlySpan<byte> input2, ReadOnlySpan<byte> secret, ulong seed) { acc.Low += Xxh3Mix16b(input, secret, seed); acc.Low ^= BinaryPrimitives.ReadUInt64LittleEndian(input2) + BinaryPrimitives.ReadUInt64LittleEndian(input2.Slice(8)); acc.High += Xxh3Mix16b(input2, secret.Slice(16), seed); acc.High ^= BinaryPrimitives.ReadUInt64LittleEndian(input) + BinaryPrimitives.ReadUInt64LittleEndian(input.Slice(8)); return acc; } private static Hash128 Xxh3Len17To128128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed) { Debug.Assert(secret.Length >= SecretSizeMin); Debug.Assert(16 < input.Length && input.Length <= 128); Hash128 acc = new Hash128 { Low = (ulong)input.Length * Prime64_1, High = 0 }; if (input.Length > 32) { if (input.Length > 64) { if (input.Length > 96) { acc = Xxh128Mix32b(acc, input.Slice(48), input.Slice(input.Length - 64), secret.Slice(96), seed); } acc = Xxh128Mix32b(acc, input.Slice(32), input.Slice(input.Length - 48), secret.Slice(64), seed); } acc = Xxh128Mix32b(acc, input.Slice(16), input.Slice(input.Length - 32), secret.Slice(32), seed); } acc = Xxh128Mix32b(acc, input, input.Slice(input.Length - 16), secret, seed); Hash128 h128 = new Hash128 { Low = acc.Low + acc.High, High = acc.Low * Prime64_1 + acc.High * Prime64_4 + ((ulong)input.Length - seed) * Prime64_2 }; h128.Low = Xxh3Avalanche(h128.Low); h128.High = 0UL - Xxh3Avalanche(h128.High); return h128; } private static Hash128 Xxh3Len129To240128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed) { Debug.Assert(secret.Length >= SecretSizeMin); Debug.Assert(128 < input.Length && input.Length <= 240); Hash128 acc = new Hash128(); int nbRounds = input.Length / 32; acc.Low = (ulong)input.Length * Prime64_1; acc.High = 0; for (int i = 0; i < 4; i++) { acc = Xxh128Mix32b(acc, input.Slice(32 * i), input.Slice(32 * i + 16), secret.Slice(32 * i), seed); } acc.Low = Xxh3Avalanche(acc.Low); acc.High = Xxh3Avalanche(acc.High); Debug.Assert(nbRounds >= 4); for (int i = 4; i < nbRounds; i++) { acc = Xxh128Mix32b(acc, input.Slice(32 * i), input.Slice(32 * i + 16), secret.Slice(MidSizeStartOffset + 32 * (i - 4)), seed); } acc = Xxh128Mix32b(acc, input.Slice(input.Length - 16), input.Slice(input.Length - 32), secret.Slice(SecretSizeMin - MidSizeLastOffset - 16), 0UL - seed); Hash128 h128 = new Hash128 { Low = acc.Low + acc.High, High = acc.Low * Prime64_1 + acc.High * Prime64_4 + ((ulong)input.Length - seed) * Prime64_2 }; h128.Low = Xxh3Avalanche(h128.Low); h128.High = 0UL - Xxh3Avalanche(h128.High); return h128; } private static Hash128 Xxh3128bitsInternal(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed) { Debug.Assert(secret.Length >= SecretSizeMin); if (input.Length <= 16) { return Xxh3Len0To16128b(input, secret, seed); } else if (input.Length <= 128) { return Xxh3Len17To128128b(input, secret, seed); } else if (input.Length <= 240) { return Xxh3Len129To240128b(input, secret, seed); } else { return Xxh3HashLong128bInternal(input, secret); } } public static Hash128 ComputeHash(ReadOnlySpan<byte> input) { return Xxh3128bitsInternal(input, Xxh3KSecret, 0UL); } } }