using Ryujinx.Graphics.Gal; using Ryujinx.HLE.Gpu.Memory; using Ryujinx.HLE.Gpu.Texture; using System; using System.Collections.Generic; namespace Ryujinx.HLE.Gpu.Engines { class NvGpuEngine3d : INvGpuEngine { public int[] Registers { get; private set; } private NvGpu Gpu; private Dictionary<int, NvGpuMethod> Methods; private struct ConstBuffer { public bool Enabled; public long Position; public int Size; } private ConstBuffer[][] ConstBuffers; private HashSet<long> FrameBuffers; public NvGpuEngine3d(NvGpu Gpu) { this.Gpu = Gpu; Registers = new int[0xe00]; Methods = new Dictionary<int, NvGpuMethod>(); void AddMethod(int Meth, int Count, int Stride, NvGpuMethod Method) { while (Count-- > 0) { Methods.Add(Meth, Method); Meth += Stride; } } AddMethod(0x585, 1, 1, VertexEndGl); AddMethod(0x674, 1, 1, ClearBuffers); AddMethod(0x6c3, 1, 1, QueryControl); AddMethod(0x8e4, 16, 1, CbData); AddMethod(0x904, 5, 8, CbBind); ConstBuffers = new ConstBuffer[6][]; for (int Index = 0; Index < ConstBuffers.Length; Index++) { ConstBuffers[Index] = new ConstBuffer[18]; } FrameBuffers = new HashSet<long>(); } public void CallMethod(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { if (Methods.TryGetValue(PBEntry.Method, out NvGpuMethod Method)) { Method(Vmm, PBEntry); } else { WriteRegister(PBEntry); } } private void VertexEndGl(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { SetFrameBuffer(Vmm, 0); long[] Keys = UploadShaders(Vmm); Gpu.Renderer.Shader.BindProgram(); //Note: Uncomment SetFrontFace SetCullFace when flipping issues are solved //SetFrontFace(); //SetCullFace(); SetDepth(); SetStencil(); SetAlphaBlending(); UploadTextures(Vmm, Keys); UploadUniforms(Vmm); UploadVertexArrays(Vmm); } private void ClearBuffers(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { int Arg0 = PBEntry.Arguments[0]; int FbIndex = (Arg0 >> 6) & 0xf; GalClearBufferFlags Flags = (GalClearBufferFlags)(Arg0 & 0x3f); SetFrameBuffer(Vmm, FbIndex); Gpu.Renderer.Rasterizer.ClearBuffers(Flags); } private void SetFrameBuffer(NvGpuVmm Vmm, int FbIndex) { long VA = MakeInt64From2xInt32(NvGpuEngine3dReg.FrameBufferNAddress + FbIndex * 0x10); long Key = Vmm.GetPhysicalAddress(VA); FrameBuffers.Add(Key); int Width = ReadRegister(NvGpuEngine3dReg.FrameBufferNWidth + FbIndex * 0x10); int Height = ReadRegister(NvGpuEngine3dReg.FrameBufferNHeight + FbIndex * 0x10); //Note: Using the Width/Height results seems to give incorrect results. //Maybe the size of all frame buffers is hardcoded to screen size? This seems unlikely. Gpu.Renderer.FrameBuffer.Create(Key, 1280, 720); Gpu.Renderer.FrameBuffer.Bind(Key); } private long[] UploadShaders(NvGpuVmm Vmm) { long[] Keys = new long[5]; long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); int Index = 1; int VpAControl = ReadRegister(NvGpuEngine3dReg.ShaderNControl); bool VpAEnable = (VpAControl & 1) != 0; if (VpAEnable) { //Note: The maxwell supports 2 vertex programs, usually //only VP B is used, but in some cases VP A is also used. //In this case, it seems to function as an extra vertex //shader stage. //The graphics abstraction layer has a special overload for this //case, which should merge the two shaders into one vertex shader. int VpAOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset); int VpBOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + 0x10); long VpAPos = BasePosition + (uint)VpAOffset; long VpBPos = BasePosition + (uint)VpBOffset; Gpu.Renderer.Shader.Create(Vmm, VpAPos, VpBPos, GalShaderType.Vertex); Gpu.Renderer.Shader.Bind(VpBPos); Index = 2; } for (; Index < 6; Index++) { int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + Index * 0x10); int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + Index * 0x10); //Note: Vertex Program (B) is always enabled. bool Enable = (Control & 1) != 0 || Index == 1; if (!Enable) { continue; } long Key = BasePosition + (uint)Offset; GalShaderType ShaderType = GetTypeFromProgram(Index); Keys[(int)ShaderType] = Key; Gpu.Renderer.Shader.Create(Vmm, Key, ShaderType); Gpu.Renderer.Shader.Bind(Key); } float SignX = GetFlipSign(NvGpuEngine3dReg.ViewportScaleX); float SignY = GetFlipSign(NvGpuEngine3dReg.ViewportScaleY); Gpu.Renderer.Shader.SetFlip(SignX, SignY); return Keys; } private static GalShaderType GetTypeFromProgram(int Program) { switch (Program) { case 0: case 1: return GalShaderType.Vertex; case 2: return GalShaderType.TessControl; case 3: return GalShaderType.TessEvaluation; case 4: return GalShaderType.Geometry; case 5: return GalShaderType.Fragment; } throw new ArgumentOutOfRangeException(nameof(Program)); } private void SetFrontFace() { float SignX = GetFlipSign(NvGpuEngine3dReg.ViewportScaleX); float SignY = GetFlipSign(NvGpuEngine3dReg.ViewportScaleY); GalFrontFace FrontFace = (GalFrontFace)ReadRegister(NvGpuEngine3dReg.FrontFace); //Flipping breaks facing. Flipping front facing too fixes it if (SignX != SignY) { switch (FrontFace) { case GalFrontFace.CW: FrontFace = GalFrontFace.CCW; break; case GalFrontFace.CCW: FrontFace = GalFrontFace.CW; break; } } Gpu.Renderer.Rasterizer.SetFrontFace(FrontFace); } private void SetCullFace() { bool Enable = (ReadRegister(NvGpuEngine3dReg.CullFaceEnable) & 1) != 0; if (Enable) { Gpu.Renderer.Rasterizer.EnableCullFace(); } else { Gpu.Renderer.Rasterizer.DisableCullFace(); } if (!Enable) { return; } GalCullFace CullFace = (GalCullFace)ReadRegister(NvGpuEngine3dReg.CullFace); Gpu.Renderer.Rasterizer.SetCullFace(CullFace); } private void SetDepth() { float ClearDepth = ReadRegisterFloat(NvGpuEngine3dReg.ClearDepth); Gpu.Renderer.Rasterizer.SetClearDepth(ClearDepth); bool Enable = (ReadRegister(NvGpuEngine3dReg.DepthTestEnable) & 1) != 0; if (Enable) { Gpu.Renderer.Rasterizer.EnableDepthTest(); } else { Gpu.Renderer.Rasterizer.DisableDepthTest(); } if (!Enable) { return; } GalComparisonOp Func = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.DepthTestFunction); Gpu.Renderer.Rasterizer.SetDepthFunction(Func); } private void SetStencil() { int ClearStencil = ReadRegister(NvGpuEngine3dReg.ClearStencil); Gpu.Renderer.Rasterizer.SetClearStencil(ClearStencil); bool Enable = (ReadRegister(NvGpuEngine3dReg.StencilEnable) & 1) != 0; if (Enable) { Gpu.Renderer.Rasterizer.EnableStencilTest(); } else { Gpu.Renderer.Rasterizer.DisableStencilTest(); } if (!Enable) { return; } void SetFaceStencil( bool IsFrontFace, NvGpuEngine3dReg Func, NvGpuEngine3dReg FuncRef, NvGpuEngine3dReg FuncMask, NvGpuEngine3dReg OpFail, NvGpuEngine3dReg OpZFail, NvGpuEngine3dReg OpZPass, NvGpuEngine3dReg Mask) { Gpu.Renderer.Rasterizer.SetStencilFunction( IsFrontFace, (GalComparisonOp)ReadRegister(Func), ReadRegister(FuncRef), ReadRegister(FuncMask)); Gpu.Renderer.Rasterizer.SetStencilOp( IsFrontFace, (GalStencilOp)ReadRegister(OpFail), (GalStencilOp)ReadRegister(OpZFail), (GalStencilOp)ReadRegister(OpZPass)); Gpu.Renderer.Rasterizer.SetStencilMask(IsFrontFace, ReadRegister(Mask)); } SetFaceStencil(false, NvGpuEngine3dReg.StencilBackFuncFunc, NvGpuEngine3dReg.StencilBackFuncRef, NvGpuEngine3dReg.StencilBackFuncMask, NvGpuEngine3dReg.StencilBackOpFail, NvGpuEngine3dReg.StencilBackOpZFail, NvGpuEngine3dReg.StencilBackOpZPass, NvGpuEngine3dReg.StencilBackMask); SetFaceStencil(true, NvGpuEngine3dReg.StencilFrontFuncFunc, NvGpuEngine3dReg.StencilFrontFuncRef, NvGpuEngine3dReg.StencilFrontFuncMask, NvGpuEngine3dReg.StencilFrontOpFail, NvGpuEngine3dReg.StencilFrontOpZFail, NvGpuEngine3dReg.StencilFrontOpZPass, NvGpuEngine3dReg.StencilFrontMask); } private void SetAlphaBlending() { //TODO: Support independent blend properly. bool Enable = (ReadRegister(NvGpuEngine3dReg.IBlendNEnable) & 1) != 0; if (Enable) { Gpu.Renderer.Blend.Enable(); } else { Gpu.Renderer.Blend.Disable(); } if (!Enable) { //If blend is not enabled, then the other values have no effect. //Note that if it is disabled, the register may contain invalid values. return; } bool BlendSeparateAlpha = (ReadRegister(NvGpuEngine3dReg.IBlendNSeparateAlpha) & 1) != 0; GalBlendEquation EquationRgb = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationRgb); GalBlendFactor FuncSrcRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcRgb); GalBlendFactor FuncDstRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstRgb); if (BlendSeparateAlpha) { GalBlendEquation EquationAlpha = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationAlpha); GalBlendFactor FuncSrcAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcAlpha); GalBlendFactor FuncDstAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstAlpha); Gpu.Renderer.Blend.SetSeparate( EquationRgb, EquationAlpha, FuncSrcRgb, FuncDstRgb, FuncSrcAlpha, FuncDstAlpha); } else { Gpu.Renderer.Blend.Set(EquationRgb, FuncSrcRgb, FuncDstRgb); } } private void UploadTextures(NvGpuVmm Vmm, long[] Keys) { long BaseShPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); int TextureCbIndex = ReadRegister(NvGpuEngine3dReg.TextureCbIndex); //Note: On the emulator renderer, Texture Unit 0 is //reserved for drawing the frame buffer. int TexIndex = 1; for (int Index = 0; Index < Keys.Length; Index++) { foreach (ShaderDeclInfo DeclInfo in Gpu.Renderer.Shader.GetTextureUsage(Keys[Index])) { long Position = ConstBuffers[Index][TextureCbIndex].Position; UploadTexture(Vmm, Position, TexIndex, DeclInfo.Index); Gpu.Renderer.Shader.EnsureTextureBinding(DeclInfo.Name, TexIndex); TexIndex++; } } } private void UploadTexture(NvGpuVmm Vmm, long BasePosition, int TexIndex, int HndIndex) { long Position = BasePosition + HndIndex * 4; int TextureHandle = Vmm.ReadInt32(Position); if (TextureHandle == 0) { //TODO: Is this correct? //Some games like puyo puyo will have 0 handles. //It may be just normal behaviour or a bug caused by sync issues. //The game does initialize the value properly after through. return; } int TicIndex = (TextureHandle >> 0) & 0xfffff; int TscIndex = (TextureHandle >> 20) & 0xfff; long TicPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexHeaderPoolOffset); long TscPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexSamplerPoolOffset); TicPosition += TicIndex * 0x20; TscPosition += TscIndex * 0x20; GalTextureSampler Sampler = TextureFactory.MakeSampler(Gpu, Vmm, TscPosition); long TextureAddress = Vmm.ReadInt64(TicPosition + 4) & 0xffffffffffff; long Key = TextureAddress; TextureAddress = Vmm.GetPhysicalAddress(TextureAddress); if (IsFrameBufferPosition(TextureAddress)) { //This texture is a frame buffer texture, //we shouldn't read anything from memory and bind //the frame buffer texture instead, since we're not //really writing anything to memory. Gpu.Renderer.FrameBuffer.BindTexture(TextureAddress, TexIndex); } else { GalTexture NewTexture = TextureFactory.MakeTexture(Vmm, TicPosition); long Size = (uint)TextureHelper.GetTextureSize(NewTexture); bool HasCachedTexture = false; if (Gpu.Renderer.Texture.TryGetCachedTexture(Key, Size, out GalTexture Texture)) { if (NewTexture.Equals(Texture) && !Vmm.IsRegionModified(Key, Size, NvGpuBufferType.Texture)) { Gpu.Renderer.Texture.Bind(Key, TexIndex); HasCachedTexture = true; } } if (!HasCachedTexture) { byte[] Data = TextureFactory.GetTextureData(Vmm, TicPosition); Gpu.Renderer.Texture.Create(Key, Data, NewTexture); } Gpu.Renderer.Texture.Bind(Key, TexIndex); } Gpu.Renderer.Texture.SetSampler(Sampler); } private void UploadUniforms(NvGpuVmm Vmm) { long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress); for (int Index = 0; Index < 5; Index++) { int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + (Index + 1) * 0x10); int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + (Index + 1) * 0x10); //Note: Vertex Program (B) is always enabled. bool Enable = (Control & 1) != 0 || Index == 0; if (!Enable) { continue; } for (int Cbuf = 0; Cbuf < ConstBuffers[Index].Length; Cbuf++) { ConstBuffer Cb = ConstBuffers[Index][Cbuf]; if (Cb.Enabled) { byte[] Data = Vmm.ReadBytes(Cb.Position, (uint)Cb.Size); Gpu.Renderer.Shader.SetConstBuffer(BasePosition + (uint)Offset, Cbuf, Data); } } } } private void UploadVertexArrays(NvGpuVmm Vmm) { long IndexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress); int IndexEntryFmt = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat); int IndexFirst = ReadRegister(NvGpuEngine3dReg.IndexBatchFirst); int IndexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount); GalIndexFormat IndexFormat = (GalIndexFormat)IndexEntryFmt; int IndexEntrySize = 1 << IndexEntryFmt; if (IndexEntrySize > 4) { throw new InvalidOperationException(); } if (IndexCount != 0) { int IbSize = IndexCount * IndexEntrySize; bool IboCached = Gpu.Renderer.Rasterizer.IsIboCached(IndexPosition, (uint)IbSize); if (!IboCached || Vmm.IsRegionModified(IndexPosition, (uint)IbSize, NvGpuBufferType.Index)) { byte[] Data = Vmm.ReadBytes(IndexPosition, (uint)IbSize); Gpu.Renderer.Rasterizer.CreateIbo(IndexPosition, Data); } Gpu.Renderer.Rasterizer.SetIndexArray(IndexPosition, IbSize, IndexFormat); } List<GalVertexAttrib>[] Attribs = new List<GalVertexAttrib>[32]; for (int Attr = 0; Attr < 16; Attr++) { int Packed = ReadRegister(NvGpuEngine3dReg.VertexAttribNFormat + Attr); int ArrayIndex = Packed & 0x1f; if (Attribs[ArrayIndex] == null) { Attribs[ArrayIndex] = new List<GalVertexAttrib>(); } Attribs[ArrayIndex].Add(new GalVertexAttrib( Attr, ((Packed >> 6) & 0x1) != 0, (Packed >> 7) & 0x3fff, (GalVertexAttribSize)((Packed >> 21) & 0x3f), (GalVertexAttribType)((Packed >> 27) & 0x7), ((Packed >> 31) & 0x1) != 0)); } int VertexFirst = ReadRegister(NvGpuEngine3dReg.VertexArrayFirst); int VertexCount = ReadRegister(NvGpuEngine3dReg.VertexArrayCount); int PrimCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl); for (int Index = 0; Index < 32; Index++) { if (Attribs[Index] == null) { continue; } int Control = ReadRegister(NvGpuEngine3dReg.VertexArrayNControl + Index * 4); bool Enable = (Control & 0x1000) != 0; long VertexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + Index * 4); long VertexEndPos = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNEndAddr + Index * 2); if (!Enable) { continue; } int Stride = Control & 0xfff; long VbSize = (VertexEndPos - VertexPosition) + 1; bool VboCached = Gpu.Renderer.Rasterizer.IsVboCached(VertexPosition, VbSize); if (!VboCached || Vmm.IsRegionModified(VertexPosition, VbSize, NvGpuBufferType.Vertex)) { byte[] Data = Vmm.ReadBytes(VertexPosition, VbSize); Gpu.Renderer.Rasterizer.CreateVbo(VertexPosition, Data); } Gpu.Renderer.Rasterizer.SetVertexArray(Index, Stride, VertexPosition, Attribs[Index].ToArray()); } GalPrimitiveType PrimType = (GalPrimitiveType)(PrimCtrl & 0xffff); if (IndexCount != 0) { int VertexBase = ReadRegister(NvGpuEngine3dReg.VertexArrayElemBase); Gpu.Renderer.Rasterizer.DrawElements(IndexPosition, IndexFirst, VertexBase, PrimType); } else { Gpu.Renderer.Rasterizer.DrawArrays(VertexFirst, VertexCount, PrimType); } } private void QueryControl(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.QueryAddress); int Seq = Registers[(int)NvGpuEngine3dReg.QuerySequence]; int Ctrl = Registers[(int)NvGpuEngine3dReg.QueryControl]; int Mode = Ctrl & 3; if (Mode == 0) { //Write mode. Vmm.WriteInt32(Position, Seq); } WriteRegister(PBEntry); } private void CbData(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress); int Offset = ReadRegister(NvGpuEngine3dReg.ConstBufferOffset); foreach (int Arg in PBEntry.Arguments) { Vmm.WriteInt32(Position + Offset, Arg); Offset += 4; } WriteRegister(NvGpuEngine3dReg.ConstBufferOffset, Offset); } private void CbBind(NvGpuVmm Vmm, NvGpuPBEntry PBEntry) { int Stage = (PBEntry.Method - 0x904) >> 3; int Index = PBEntry.Arguments[0]; bool Enabled = (Index & 1) != 0; Index = (Index >> 4) & 0x1f; long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress); ConstBuffers[Stage][Index].Position = Position; ConstBuffers[Stage][Index].Enabled = Enabled; ConstBuffers[Stage][Index].Size = ReadRegister(NvGpuEngine3dReg.ConstBufferSize); } private float GetFlipSign(NvGpuEngine3dReg Reg) { return MathF.Sign(ReadRegisterFloat(Reg)); } private long MakeInt64From2xInt32(NvGpuEngine3dReg Reg) { return (long)Registers[(int)Reg + 0] << 32 | (uint)Registers[(int)Reg + 1]; } private void WriteRegister(NvGpuPBEntry PBEntry) { int ArgsCount = PBEntry.Arguments.Count; if (ArgsCount > 0) { Registers[PBEntry.Method] = PBEntry.Arguments[ArgsCount - 1]; } } private int ReadRegister(NvGpuEngine3dReg Reg) { return Registers[(int)Reg]; } private float ReadRegisterFloat(NvGpuEngine3dReg Reg) { return BitConverter.Int32BitsToSingle(ReadRegister(Reg)); } private void WriteRegister(NvGpuEngine3dReg Reg, int Value) { Registers[(int)Reg] = Value; } public bool IsFrameBufferPosition(long Position) { return FrameBuffers.Contains(Position); } } }