1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-10-01 12:30:00 +02:00
Ryujinx/ARMeilleure/Signal/NativeSignalHandler.cs
FICTURE7 22b2cb39af
Reduce JIT GC allocations (#2515)
* Turn `MemoryOperand` into a struct

* Remove `IntrinsicOperation`

* Remove `PhiNode`

* Remove `Node`

* Turn `Operand` into a struct

* Turn `Operation` into a struct

* Clean up pool management methods

* Add `Arena` allocator

* Move `OperationHelper` to `Operation.Factory`

* Move `OperandHelper` to `Operand.Factory`

* Optimize `Operation` a bit

* Fix `Arena` initialization

* Rename `NativeList<T>` to `ArenaList<T>`

* Reduce `Operand` size from 88 to 56 bytes

* Reduce `Operation` size from 56 to 40 bytes

* Add optimistic interning of Register & Constant operands

* Optimize `RegisterUsage` pass a bit

* Optimize `RemoveUnusedNodes` pass a bit

Iterating in reverse-order allows killing dependency chains in a single
pass.

* Fix PPTC symbols

* Optimize `BasicBlock` a bit

Reduce allocations from `_successor` & `DominanceFrontiers`

* Fix `Operation` resize

* Make `Arena` expandable

Change the arena allocator to be expandable by allocating in pages, with
some of them being pooled. Currently 32 pages are pooled. An LRU removal
mechanism should probably be added to it.

Apparently MHR can allocate bitmaps large enough to exceed the 16MB
limit for the type.

* Move `Arena` & `ArenaList` to `Common`

* Remove `ThreadStaticPool` & co

* Add `PhiOperation`

* Reduce `Operand` size from 56 from 48 bytes

* Add linear-probing to `Operand` intern table

* Optimize `HybridAllocator` a bit

* Add `Allocators` class

* Tune `ArenaAllocator` sizes

* Add page removal mechanism to `ArenaAllocator`

Remove pages which have not been used for more than 5s after each reset.

I am on fence if this would be better using a Gen2 callback object like
the one in System.Buffers.ArrayPool<T>, to trim the pool. Because right
now if a large translation happens, the pages will be freed only after a
reset. This reset may not happen for a while because no new translation
is hit, but the arena base sizes are rather small.

* Fix `OOM` when allocating larger than page size in `ArenaAllocator`

Tweak resizing mechanism for Operand.Uses and Assignemnts.

* Optimize `Optimizer` a bit

* Optimize `Operand.Add<T>/Remove<T>` a bit

* Clean up `PreAllocator`

* Fix phi insertion order

Reduce codegen diffs.

* Fix code alignment

* Use new heuristics for degree of parallelism

* Suppress warnings

* Address gdkchan's feedback

Renamed `GetValue()` to `GetValueUnsafe()` to make it more clear that
`Operand.Value` should usually not be modified directly.

* Add fast path to `ArenaAllocator`

* Assembly for `ArenaAllocator.Allocate(ulong)`:

  .L0:
    mov rax, [rcx+0x18]
    lea r8, [rax+rdx]
    cmp r8, [rcx+0x10]
    ja short .L2
  .L1:
    mov rdx, [rcx+8]
    add rax, [rdx+8]
    mov [rcx+0x18], r8
    ret
  .L2:
    jmp ArenaAllocator.AllocateSlow(UInt64)

  A few variable/field had to be changed to ulong so that RyuJIT avoids
  emitting zero-extends.

* Implement a new heuristic to free pooled pages.

  If an arena is used often, it is more likely that its pages will be
  needed, so the pages are kept for longer (e.g: during PPTC rebuild or
  burst sof compilations). If is not used often, then it is more likely
  that its pages will not be needed (e.g: after PPTC rebuild or bursts
  of compilations).

* Address riperiperi's feedback

* Use `EqualityComparer<T>` in `IntrusiveList<T>`

Avoids a potential GC hole in `Equals(T, T)`.
2021-08-17 15:08:34 -03:00

321 lines
13 KiB
C#

using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using static ARMeilleure.IntermediateRepresentation.Operand.Factory;
namespace ARMeilleure.Signal
{
[StructLayout(LayoutKind.Sequential, Pack = 1)]
struct SignalHandlerRange
{
public int IsActive;
public nuint RangeAddress;
public nuint RangeEndAddress;
public IntPtr ActionPointer;
}
[StructLayout(LayoutKind.Sequential, Pack = 1)]
struct SignalHandlerConfig
{
/// <summary>
/// The byte offset of the faulting address in the SigInfo or ExceptionRecord struct.
/// </summary>
public int StructAddressOffset;
/// <summary>
/// The byte offset of the write flag in the SigInfo or ExceptionRecord struct.
/// </summary>
public int StructWriteOffset;
/// <summary>
/// The sigaction handler that was registered before this one. (unix only)
/// </summary>
public nuint UnixOldSigaction;
/// <summary>
/// The type of the previous sigaction. True for the 3 argument variant. (unix only)
/// </summary>
public int UnixOldSigaction3Arg;
public SignalHandlerRange Range0;
public SignalHandlerRange Range1;
public SignalHandlerRange Range2;
public SignalHandlerRange Range3;
public SignalHandlerRange Range4;
public SignalHandlerRange Range5;
public SignalHandlerRange Range6;
public SignalHandlerRange Range7;
}
public static class NativeSignalHandler
{
private delegate void UnixExceptionHandler(int sig, IntPtr info, IntPtr ucontext);
[UnmanagedFunctionPointer(CallingConvention.Winapi)]
private delegate int VectoredExceptionHandler(IntPtr exceptionInfo);
private const int MaxTrackedRanges = 8;
private const int StructAddressOffset = 0;
private const int StructWriteOffset = 4;
private const int UnixOldSigaction = 8;
private const int UnixOldSigaction3Arg = 16;
private const int RangeOffset = 20;
private const int EXCEPTION_CONTINUE_SEARCH = 0;
private const int EXCEPTION_CONTINUE_EXECUTION = -1;
private const uint EXCEPTION_ACCESS_VIOLATION = 0xc0000005;
private const ulong PageSize = 0x1000;
private const ulong PageMask = PageSize - 1;
private static IntPtr _handlerConfig;
private static IntPtr _signalHandlerPtr;
private static IntPtr _signalHandlerHandle;
private static readonly object _lock = new object();
private static bool _initialized;
static NativeSignalHandler()
{
_handlerConfig = Marshal.AllocHGlobal(Unsafe.SizeOf<SignalHandlerConfig>());
ref SignalHandlerConfig config = ref GetConfigRef();
config = new SignalHandlerConfig();
}
public static void InitializeSignalHandler()
{
if (_initialized) return;
lock (_lock)
{
if (_initialized) return;
bool unix = RuntimeInformation.IsOSPlatform(OSPlatform.Linux) || RuntimeInformation.IsOSPlatform(OSPlatform.OSX);
ref SignalHandlerConfig config = ref GetConfigRef();
if (unix)
{
// Unix siginfo struct locations.
// NOTE: These are incredibly likely to be different between kernel version and architectures.
config.StructAddressOffset = 16; // si_addr
config.StructWriteOffset = 8; // si_code
_signalHandlerPtr = Marshal.GetFunctionPointerForDelegate(GenerateUnixSignalHandler(_handlerConfig));
SigAction old = UnixSignalHandlerRegistration.RegisterExceptionHandler(_signalHandlerPtr);
config.UnixOldSigaction = (nuint)(ulong)old.sa_handler;
config.UnixOldSigaction3Arg = old.sa_flags & 4;
}
else
{
config.StructAddressOffset = 40; // ExceptionInformation1
config.StructWriteOffset = 32; // ExceptionInformation0
_signalHandlerPtr = Marshal.GetFunctionPointerForDelegate(GenerateWindowsSignalHandler(_handlerConfig));
_signalHandlerHandle = WindowsSignalHandlerRegistration.RegisterExceptionHandler(_signalHandlerPtr);
}
_initialized = true;
}
}
private static unsafe ref SignalHandlerConfig GetConfigRef()
{
return ref Unsafe.AsRef<SignalHandlerConfig>((void*)_handlerConfig);
}
public static unsafe bool AddTrackedRegion(nuint address, nuint endAddress, IntPtr action)
{
var ranges = &((SignalHandlerConfig*)_handlerConfig)->Range0;
for (int i = 0; i < MaxTrackedRanges; i++)
{
if (ranges[i].IsActive == 0)
{
ranges[i].RangeAddress = address;
ranges[i].RangeEndAddress = endAddress;
ranges[i].ActionPointer = action;
ranges[i].IsActive = 1;
return true;
}
}
return false;
}
public static unsafe bool RemoveTrackedRegion(nuint address)
{
var ranges = &((SignalHandlerConfig*)_handlerConfig)->Range0;
for (int i = 0; i < MaxTrackedRanges; i++)
{
if (ranges[i].IsActive == 1 && ranges[i].RangeAddress == address)
{
ranges[i].IsActive = 0;
return true;
}
}
return false;
}
private static Operand EmitGenericRegionCheck(EmitterContext context, IntPtr signalStructPtr, Operand faultAddress, Operand isWrite)
{
Operand inRegionLocal = context.AllocateLocal(OperandType.I32);
context.Copy(inRegionLocal, Const(0));
Operand endLabel = Label();
for (int i = 0; i < MaxTrackedRanges; i++)
{
ulong rangeBaseOffset = (ulong)(RangeOffset + i * Unsafe.SizeOf<SignalHandlerRange>());
Operand nextLabel = Label();
Operand isActive = context.Load(OperandType.I32, Const((ulong)signalStructPtr + rangeBaseOffset));
context.BranchIfFalse(nextLabel, isActive);
Operand rangeAddress = context.Load(OperandType.I64, Const((ulong)signalStructPtr + rangeBaseOffset + 4));
Operand rangeEndAddress = context.Load(OperandType.I64, Const((ulong)signalStructPtr + rangeBaseOffset + 12));
// Is the fault address within this tracked region?
Operand inRange = context.BitwiseAnd(
context.ICompare(faultAddress, rangeAddress, Comparison.GreaterOrEqualUI),
context.ICompare(faultAddress, rangeEndAddress, Comparison.Less)
);
// Only call tracking if in range.
context.BranchIfFalse(nextLabel, inRange, BasicBlockFrequency.Cold);
context.Copy(inRegionLocal, Const(1));
Operand offset = context.BitwiseAnd(context.Subtract(faultAddress, rangeAddress), Const(~PageMask));
// Call the tracking action, with the pointer's relative offset to the base address.
Operand trackingActionPtr = context.Load(OperandType.I64, Const((ulong)signalStructPtr + rangeBaseOffset + 20));
context.Call(trackingActionPtr, OperandType.I32, offset, Const(PageSize), isWrite);
context.Branch(endLabel);
context.MarkLabel(nextLabel);
}
context.MarkLabel(endLabel);
return context.Copy(inRegionLocal);
}
private static UnixExceptionHandler GenerateUnixSignalHandler(IntPtr signalStructPtr)
{
EmitterContext context = new EmitterContext();
// (int sig, SigInfo* sigInfo, void* ucontext)
Operand sigInfoPtr = context.LoadArgument(OperandType.I64, 1);
Operand structAddressOffset = context.Load(OperandType.I64, Const((ulong)signalStructPtr + StructAddressOffset));
Operand structWriteOffset = context.Load(OperandType.I64, Const((ulong)signalStructPtr + StructWriteOffset));
Operand faultAddress = context.Load(OperandType.I64, context.Add(sigInfoPtr, context.ZeroExtend32(OperandType.I64, structAddressOffset)));
Operand writeFlag = context.Load(OperandType.I64, context.Add(sigInfoPtr, context.ZeroExtend32(OperandType.I64, structWriteOffset)));
Operand isWrite = context.ICompareNotEqual(writeFlag, Const(0L)); // Normalize to 0/1.
Operand isInRegion = EmitGenericRegionCheck(context, signalStructPtr, faultAddress, isWrite);
Operand endLabel = Label();
context.BranchIfTrue(endLabel, isInRegion);
Operand unixOldSigaction = context.Load(OperandType.I64, Const((ulong)signalStructPtr + UnixOldSigaction));
Operand unixOldSigaction3Arg = context.Load(OperandType.I64, Const((ulong)signalStructPtr + UnixOldSigaction3Arg));
Operand threeArgLabel = Label();
context.BranchIfTrue(threeArgLabel, unixOldSigaction3Arg);
context.Call(unixOldSigaction, OperandType.None, context.LoadArgument(OperandType.I32, 0));
context.Branch(endLabel);
context.MarkLabel(threeArgLabel);
context.Call(unixOldSigaction,
OperandType.None,
context.LoadArgument(OperandType.I32, 0),
sigInfoPtr,
context.LoadArgument(OperandType.I64, 2)
);
context.MarkLabel(endLabel);
context.Return();
ControlFlowGraph cfg = context.GetControlFlowGraph();
OperandType[] argTypes = new OperandType[] { OperandType.I32, OperandType.I64, OperandType.I64 };
return Compiler.Compile<UnixExceptionHandler>(cfg, argTypes, OperandType.None, CompilerOptions.HighCq);
}
private static VectoredExceptionHandler GenerateWindowsSignalHandler(IntPtr signalStructPtr)
{
EmitterContext context = new EmitterContext();
// (ExceptionPointers* exceptionInfo)
Operand exceptionInfoPtr = context.LoadArgument(OperandType.I64, 0);
Operand exceptionRecordPtr = context.Load(OperandType.I64, exceptionInfoPtr);
// First thing's first - this catches a number of exceptions, but we only want access violations.
Operand validExceptionLabel = Label();
Operand exceptionCode = context.Load(OperandType.I32, exceptionRecordPtr);
context.BranchIf(validExceptionLabel, exceptionCode, Const(EXCEPTION_ACCESS_VIOLATION), Comparison.Equal);
context.Return(Const(EXCEPTION_CONTINUE_SEARCH)); // Don't handle this one.
context.MarkLabel(validExceptionLabel);
// Next, read the address of the invalid access, and whether it is a write or not.
Operand structAddressOffset = context.Load(OperandType.I32, Const((ulong)signalStructPtr + StructAddressOffset));
Operand structWriteOffset = context.Load(OperandType.I32, Const((ulong)signalStructPtr + StructWriteOffset));
Operand faultAddress = context.Load(OperandType.I64, context.Add(exceptionRecordPtr, context.ZeroExtend32(OperandType.I64, structAddressOffset)));
Operand writeFlag = context.Load(OperandType.I64, context.Add(exceptionRecordPtr, context.ZeroExtend32(OperandType.I64, structWriteOffset)));
Operand isWrite = context.ICompareNotEqual(writeFlag, Const(0L)); // Normalize to 0/1.
Operand isInRegion = EmitGenericRegionCheck(context, signalStructPtr, faultAddress, isWrite);
Operand endLabel = Label();
// If the region check result is false, then run the next vectored exception handler.
context.BranchIfTrue(endLabel, isInRegion);
context.Return(Const(EXCEPTION_CONTINUE_SEARCH));
context.MarkLabel(endLabel);
// Otherwise, return to execution.
context.Return(Const(EXCEPTION_CONTINUE_EXECUTION));
// Compile and return the function.
ControlFlowGraph cfg = context.GetControlFlowGraph();
OperandType[] argTypes = new OperandType[] { OperandType.I64 };
return Compiler.Compile<VectoredExceptionHandler>(cfg, argTypes, OperandType.I32, CompilerOptions.HighCq);
}
}
}