1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-10-01 12:30:00 +02:00
Ryujinx/ARMeilleure/Instructions/SoftFallback.cs
riperiperi b1b6f294f2
Add most of the A32 instruction set to ARMeilleure (#897)
* Implement TEQ and MOV (Imm16)

* Initial work on A32 instructions + SVC. No tests yet, hangs in rtld.

* Implement CLZ, fix BFI and BFC

Now stops on SIMD initialization.

* Exclusive access instructions, fix to mul, system instructions.

Now gets to a break after SignalProcessWideKey64.

* Better impl of UBFX, add UDIV and SDIV

Now boots way further - now stuck on VMOV instruction.

* Many more instructions, start on SIMD and testing framework.

* Fix build issues

* svc: Rework 32 bit codepath

Fixing once and for all argument ordering issues.

* Fix 32 bits stacktrace

* hle debug: Add 32 bits dynamic section parsing

* Fix highCq mode, add many tests, fix some instruction bugs

Still suffers from critical malloc failure 😩

* Fix incorrect opcode decoders and a few more instructions.

* Add a few instructions and fix others. re-disable highCq for now.

Disabled the svc memory clear since i'm not sure about it.

* Fix build

* Fix typo in ordered/exclusive stores.

* Implement some more instructions, fix others.

Uxtab16/Sxtab16 are untested.

* Begin impl of pairwise, some other instructions.

* Add a few more instructions, a quick hack to fix svcs for now.

* Add tests and fix issues with VTRN, VZIP, VUZP

* Add a few more instructions, fix Vmul_1 encoding.

* Fix way too many instruction bugs, add tests for some of the more important ones.

* Fix HighCq, enable FastFP paths for some floating point instructions

(not entirely sure why these were disabled, so important to note this
commit exists)

Branching has been removed in A32 shifts until I figure out if it's
worth it

* Cleanup Part 1

There should be no functional change between these next few commits.
Should is the key word. (except for removing break handler)

* Implement 32 bits syscalls

Co-authored-by: riperiperi <rhy3756547@hotmail.com>

Implement all 32 bits counterparts of the 64 bits syscalls we currently
have.

* Refactor part 2: Move index/subindex logic to Operand

May have inadvertently fixed one (1) bug

* Add FlushProcessDataCache32

* Address jd's comments

* Remove 16 bit encodings from OpCodeTable

Still need to catch some edge cases (operands that use the "F" flag) and
make Q encodings with non-even indexes undefined.

* Correct Fpscr handling for FP vector slow paths

WIP

* Add StandardFPSCRValue behaviour for all Arithmetic instructions

* Add StandardFPSCRValue behaviour to compare instructions.

* Force passing of fpcr to FPProcessException and FPUnpack.

Reduces potential for code error significantly

* OpCode cleanup

* Remove urgency from DMB comment in MRRC

DMB is currently a no-op via the instruction, so it should likely still
be a no-op here.

* Test Cleanup

* Fix FPDefaultNaN on Ryzen CPUs

* Improve some tests, fix some shift instructions, add slow path for Vadd

* Fix Typo

* More test cleanup

* Flip order of Fx and index, to indicate that the operand's is the "base"

* Remove Simd32 register type, use Int32 and Int64 for scalars like A64 does.

* Reintroduce alignment to DecoderHelper (removed by accident)

* One more realign as reading diffs is hard

* Use I32 registers in A32 (part 2)

Swap default integer register type based on current execution mode.

* FPSCR flags as Registers (part 1)

Still need to change NativeContext and ExecutionContext to allow
getting/setting with the flag values.

* Use I32 registers in A32 (part 1)

* FPSCR flags as registers (part 2)

Only CMP flags are on the registers right now. It could be useful to use
more of the space in non-fast-float when implementing A32 flags
accurately in the fast path.

* Address Feedback

* Correct FP->Int behaviour (should saturate)

* Make branches made by writing to PC eligible for Rejit

Greatly improves performance in most games.

* Remove unused branching for Vtbl

* RejitRequest as a class rather than a tuple

Makes a lot more sense than storing tuples on a dictionary.

* Add VMOVN, VSHR (imm), VSHRN (imm) and related tests

* Re-order InstEmitSystem32

Alphabetical sorting.

* Address Feedback

Feedback from Ac_K, remove and sort usings.

* Address Feedback 2

* Address Feedback from LDj3SNuD

Opcode table reordered to have alphabetical sorting within groups,
Vmaxnm and Vminnm have split names to be less ambiguous, SoftFloat nits,
Test nits and Test simplification with ValueSource.

* Add Debug Asserts to A32 helpers

Mainly to prevent the shift ones from being used on I64 operands, as
they expect I32 input for most operations (eg. carry flag setting), and
expect I32 input for shift and boolean amounts. Most other helper
functions don't take Operands, throw on out of range values, and take
specific types of OpCode, so didn't need any asserts.

* Use ConstF rather than creating an operand.

(useful for pooling in future)

* Move exclusive load to helper, reference call flag rather than literal 1.

* Address LDj feedback (minus table flatten)

one final look before it's all gone. the world is so beautiful.

* Flatten OpCodeTable

oh no

* Address more table ordering

* Call Flag as int on A32

Co-authored-by: Natalie C. <cyuubiapps@gmail.com>
Co-authored-by: Thog <thog@protonmail.com>
2020-02-24 08:20:40 +11:00

1264 lines
35 KiB
C#

using ARMeilleure.State;
using System;
namespace ARMeilleure.Instructions
{
static class SoftFallback
{
#region "ShlReg"
public static long SignedShlReg(long value, long shift, bool round, int size)
{
int eSize = 8 << size;
int shiftLsB = (sbyte)shift;
if (shiftLsB < 0)
{
return SignedShrReg(value, -shiftLsB, round, eSize);
}
else if (shiftLsB > 0)
{
if (shiftLsB >= eSize)
{
return 0L;
}
return value << shiftLsB;
}
else /* if (shiftLsB == 0) */
{
return value;
}
}
public static ulong UnsignedShlReg(ulong value, ulong shift, bool round, int size)
{
int eSize = 8 << size;
int shiftLsB = (sbyte)shift;
if (shiftLsB < 0)
{
return UnsignedShrReg(value, -shiftLsB, round, eSize);
}
else if (shiftLsB > 0)
{
if (shiftLsB >= eSize)
{
return 0UL;
}
return value << shiftLsB;
}
else /* if (shiftLsB == 0) */
{
return value;
}
}
public static long SignedShlRegSatQ(long value, long shift, bool round, int size)
{
ExecutionContext context = NativeInterface.GetContext();
int eSize = 8 << size;
int shiftLsB = (sbyte)shift;
if (shiftLsB < 0)
{
return SignedShrReg(value, -shiftLsB, round, eSize);
}
else if (shiftLsB > 0)
{
if (shiftLsB >= eSize)
{
return SignedSignSatQ(value, eSize, context);
}
if (eSize == 64)
{
long shl = value << shiftLsB;
long shr = shl >> shiftLsB;
if (shr != value)
{
return SignedSignSatQ(value, eSize, context);
}
else /* if (shr == value) */
{
return shl;
}
}
else /* if (eSize != 64) */
{
return SignedSrcSignedDstSatQ(value << shiftLsB, size);
}
}
else /* if (shiftLsB == 0) */
{
return value;
}
}
public static ulong UnsignedShlRegSatQ(ulong value, ulong shift, bool round, int size)
{
ExecutionContext context = NativeInterface.GetContext();
int eSize = 8 << size;
int shiftLsB = (sbyte)shift;
if (shiftLsB < 0)
{
return UnsignedShrReg(value, -shiftLsB, round, eSize);
}
else if (shiftLsB > 0)
{
if (shiftLsB >= eSize)
{
return UnsignedSignSatQ(value, eSize, context);
}
if (eSize == 64)
{
ulong shl = value << shiftLsB;
ulong shr = shl >> shiftLsB;
if (shr != value)
{
return UnsignedSignSatQ(value, eSize, context);
}
else /* if (shr == value) */
{
return shl;
}
}
else /* if (eSize != 64) */
{
return UnsignedSrcUnsignedDstSatQ(value << shiftLsB, size);
}
}
else /* if (shiftLsB == 0) */
{
return value;
}
}
private static long SignedShrReg(long value, int shift, bool round, int eSize) // shift := [1, 128]; eSize := {8, 16, 32, 64}.
{
if (round)
{
if (shift >= eSize)
{
return 0L;
}
long roundConst = 1L << (shift - 1);
long add = value + roundConst;
if (eSize == 64)
{
if ((~value & (value ^ add)) < 0L)
{
return (long)((ulong)add >> shift);
}
else
{
return add >> shift;
}
}
else /* if (eSize != 64) */
{
return add >> shift;
}
}
else /* if (!round) */
{
if (shift >= eSize)
{
if (value < 0L)
{
return -1L;
}
else /* if (value >= 0L) */
{
return 0L;
}
}
return value >> shift;
}
}
private static ulong UnsignedShrReg(ulong value, int shift, bool round, int eSize) // shift := [1, 128]; eSize := {8, 16, 32, 64}.
{
if (round)
{
if (shift > 64)
{
return 0UL;
}
ulong roundConst = 1UL << (shift - 1);
ulong add = value + roundConst;
if (eSize == 64)
{
if ((add < value) && (add < roundConst))
{
if (shift == 64)
{
return 1UL;
}
return (add >> shift) | (0x8000000000000000UL >> (shift - 1));
}
else
{
if (shift == 64)
{
return 0UL;
}
return add >> shift;
}
}
else /* if (eSize != 64) */
{
if (shift == 64)
{
return 0UL;
}
return add >> shift;
}
}
else /* if (!round) */
{
if (shift >= eSize)
{
return 0UL;
}
return value >> shift;
}
}
private static long SignedSignSatQ(long op, int eSize, ExecutionContext context) // eSize := {8, 16, 32, 64}.
{
long tMaxValue = (1L << (eSize - 1)) - 1L;
long tMinValue = -(1L << (eSize - 1));
if (op > 0L)
{
context.Fpsr |= FPSR.Qc;
return tMaxValue;
}
else if (op < 0L)
{
context.Fpsr |= FPSR.Qc;
return tMinValue;
}
else
{
return 0L;
}
}
private static ulong UnsignedSignSatQ(ulong op, int eSize, ExecutionContext context) // eSize := {8, 16, 32, 64}.
{
ulong tMaxValue = ulong.MaxValue >> (64 - eSize);
if (op > 0UL)
{
context.Fpsr |= FPSR.Qc;
return tMaxValue;
}
else
{
return 0UL;
}
}
#endregion
#region "ShrImm64"
public static long SignedShrImm64(long value, long roundConst, int shift)
{
if (roundConst == 0L)
{
if (shift <= 63)
{
return value >> shift;
}
else /* if (shift == 64) */
{
if (value < 0L)
{
return -1L;
}
else /* if (value >= 0L) */
{
return 0L;
}
}
}
else /* if (roundConst == 1L << (shift - 1)) */
{
if (shift <= 63)
{
long add = value + roundConst;
if ((~value & (value ^ add)) < 0L)
{
return (long)((ulong)add >> shift);
}
else
{
return add >> shift;
}
}
else /* if (shift == 64) */
{
return 0L;
}
}
}
public static ulong UnsignedShrImm64(ulong value, long roundConst, int shift)
{
if (roundConst == 0L)
{
if (shift <= 63)
{
return value >> shift;
}
else /* if (shift == 64) */
{
return 0UL;
}
}
else /* if (roundConst == 1L << (shift - 1)) */
{
ulong add = value + (ulong)roundConst;
if ((add < value) && (add < (ulong)roundConst))
{
if (shift <= 63)
{
return (add >> shift) | (0x8000000000000000UL >> (shift - 1));
}
else /* if (shift == 64) */
{
return 1UL;
}
}
else
{
if (shift <= 63)
{
return add >> shift;
}
else /* if (shift == 64) */
{
return 0UL;
}
}
}
}
#endregion
#region "Rounding"
public static double Round(double value)
{
ExecutionContext context = NativeInterface.GetContext();
FPRoundingMode roundMode = context.Fpcr.GetRoundingMode();
if (roundMode == FPRoundingMode.ToNearest)
{
return Math.Round(value); // even
}
else if (roundMode == FPRoundingMode.TowardsPlusInfinity)
{
return Math.Ceiling(value);
}
else if (roundMode == FPRoundingMode.TowardsMinusInfinity)
{
return Math.Floor(value);
}
else /* if (roundMode == FPRoundingMode.TowardsZero) */
{
return Math.Truncate(value);
}
}
public static float RoundF(float value)
{
ExecutionContext context = NativeInterface.GetContext();
FPRoundingMode roundMode = context.Fpcr.GetRoundingMode();
if (roundMode == FPRoundingMode.ToNearest)
{
return MathF.Round(value); // even
}
else if (roundMode == FPRoundingMode.TowardsPlusInfinity)
{
return MathF.Ceiling(value);
}
else if (roundMode == FPRoundingMode.TowardsMinusInfinity)
{
return MathF.Floor(value);
}
else /* if (roundMode == FPRoundingMode.TowardsZero) */
{
return MathF.Truncate(value);
}
}
public static int FloatToInt32(float value)
{
return SatF32ToS32(RoundF(value));
}
public static int DoubleToInt32(double value)
{
return SatF64ToS32(Round(value));
}
public static uint FloatToUInt32(float value)
{
return SatF32ToU32(RoundF(value));
}
public static uint DoubleToUInt32(double value)
{
return SatF64ToU32(Round(value));
}
#endregion
#region "Saturation"
public static int SatF32ToS32(float value)
{
if (float.IsNaN(value)) return 0;
return value >= int.MaxValue ? int.MaxValue :
value <= int.MinValue ? int.MinValue : (int)value;
}
public static long SatF32ToS64(float value)
{
if (float.IsNaN(value)) return 0;
return value >= long.MaxValue ? long.MaxValue :
value <= long.MinValue ? long.MinValue : (long)value;
}
public static uint SatF32ToU32(float value)
{
if (float.IsNaN(value)) return 0;
return value >= uint.MaxValue ? uint.MaxValue :
value <= uint.MinValue ? uint.MinValue : (uint)value;
}
public static ulong SatF32ToU64(float value)
{
if (float.IsNaN(value)) return 0;
return value >= ulong.MaxValue ? ulong.MaxValue :
value <= ulong.MinValue ? ulong.MinValue : (ulong)value;
}
public static int SatF64ToS32(double value)
{
if (double.IsNaN(value)) return 0;
return value >= int.MaxValue ? int.MaxValue :
value <= int.MinValue ? int.MinValue : (int)value;
}
public static long SatF64ToS64(double value)
{
if (double.IsNaN(value)) return 0;
return value >= long.MaxValue ? long.MaxValue :
value <= long.MinValue ? long.MinValue : (long)value;
}
public static uint SatF64ToU32(double value)
{
if (double.IsNaN(value)) return 0;
return value >= uint.MaxValue ? uint.MaxValue :
value <= uint.MinValue ? uint.MinValue : (uint)value;
}
public static ulong SatF64ToU64(double value)
{
if (double.IsNaN(value)) return 0;
return value >= ulong.MaxValue ? ulong.MaxValue :
value <= ulong.MinValue ? ulong.MinValue : (ulong)value;
}
#endregion
#region "Saturating"
public static long SignedSrcSignedDstSatQ(long op, int size)
{
ExecutionContext context = NativeInterface.GetContext();
int eSize = 8 << size;
long tMaxValue = (1L << (eSize - 1)) - 1L;
long tMinValue = -(1L << (eSize - 1));
if (op > tMaxValue)
{
context.Fpsr |= FPSR.Qc;
return tMaxValue;
}
else if (op < tMinValue)
{
context.Fpsr |= FPSR.Qc;
return tMinValue;
}
else
{
return op;
}
}
public static ulong SignedSrcUnsignedDstSatQ(long op, int size)
{
ExecutionContext context = NativeInterface.GetContext();
int eSize = 8 << size;
ulong tMaxValue = (1UL << eSize) - 1UL;
ulong tMinValue = 0UL;
if (op > (long)tMaxValue)
{
context.Fpsr |= FPSR.Qc;
return tMaxValue;
}
else if (op < (long)tMinValue)
{
context.Fpsr |= FPSR.Qc;
return tMinValue;
}
else
{
return (ulong)op;
}
}
public static long UnsignedSrcSignedDstSatQ(ulong op, int size)
{
ExecutionContext context = NativeInterface.GetContext();
int eSize = 8 << size;
long tMaxValue = (1L << (eSize - 1)) - 1L;
if (op > (ulong)tMaxValue)
{
context.Fpsr |= FPSR.Qc;
return tMaxValue;
}
else
{
return (long)op;
}
}
public static ulong UnsignedSrcUnsignedDstSatQ(ulong op, int size)
{
ExecutionContext context = NativeInterface.GetContext();
int eSize = 8 << size;
ulong tMaxValue = (1UL << eSize) - 1UL;
if (op > tMaxValue)
{
context.Fpsr |= FPSR.Qc;
return tMaxValue;
}
else
{
return op;
}
}
public static long UnarySignedSatQAbsOrNeg(long op)
{
ExecutionContext context = NativeInterface.GetContext();
if (op == long.MinValue)
{
context.Fpsr |= FPSR.Qc;
return long.MaxValue;
}
else
{
return op;
}
}
public static long BinarySignedSatQAdd(long op1, long op2)
{
ExecutionContext context = NativeInterface.GetContext();
long add = op1 + op2;
if ((~(op1 ^ op2) & (op1 ^ add)) < 0L)
{
context.Fpsr |= FPSR.Qc;
if (op1 < 0L)
{
return long.MinValue;
}
else
{
return long.MaxValue;
}
}
else
{
return add;
}
}
public static ulong BinaryUnsignedSatQAdd(ulong op1, ulong op2)
{
ExecutionContext context = NativeInterface.GetContext();
ulong add = op1 + op2;
if ((add < op1) && (add < op2))
{
context.Fpsr |= FPSR.Qc;
return ulong.MaxValue;
}
else
{
return add;
}
}
public static long BinarySignedSatQSub(long op1, long op2)
{
ExecutionContext context = NativeInterface.GetContext();
long sub = op1 - op2;
if (((op1 ^ op2) & (op1 ^ sub)) < 0L)
{
context.Fpsr |= FPSR.Qc;
if (op1 < 0L)
{
return long.MinValue;
}
else
{
return long.MaxValue;
}
}
else
{
return sub;
}
}
public static ulong BinaryUnsignedSatQSub(ulong op1, ulong op2)
{
ExecutionContext context = NativeInterface.GetContext();
ulong sub = op1 - op2;
if (op1 < op2)
{
context.Fpsr |= FPSR.Qc;
return ulong.MinValue;
}
else
{
return sub;
}
}
public static long BinarySignedSatQAcc(ulong op1, long op2)
{
ExecutionContext context = NativeInterface.GetContext();
if (op1 <= (ulong)long.MaxValue)
{
// op1 from ulong.MinValue to (ulong)long.MaxValue
// op2 from long.MinValue to long.MaxValue
long add = (long)op1 + op2;
if ((~op2 & add) < 0L)
{
context.Fpsr |= FPSR.Qc;
return long.MaxValue;
}
else
{
return add;
}
}
else if (op2 >= 0L)
{
// op1 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
// op2 from (long)ulong.MinValue to long.MaxValue
context.Fpsr |= FPSR.Qc;
return long.MaxValue;
}
else
{
// op1 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
// op2 from long.MinValue to (long)ulong.MinValue - 1L
ulong add = op1 + (ulong)op2;
if (add > (ulong)long.MaxValue)
{
context.Fpsr |= FPSR.Qc;
return long.MaxValue;
}
else
{
return (long)add;
}
}
}
public static ulong BinaryUnsignedSatQAcc(long op1, ulong op2)
{
ExecutionContext context = NativeInterface.GetContext();
if (op1 >= 0L)
{
// op1 from (long)ulong.MinValue to long.MaxValue
// op2 from ulong.MinValue to ulong.MaxValue
ulong add = (ulong)op1 + op2;
if ((add < (ulong)op1) && (add < op2))
{
context.Fpsr |= FPSR.Qc;
return ulong.MaxValue;
}
else
{
return add;
}
}
else if (op2 > (ulong)long.MaxValue)
{
// op1 from long.MinValue to (long)ulong.MinValue - 1L
// op2 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
return (ulong)op1 + op2;
}
else
{
// op1 from long.MinValue to (long)ulong.MinValue - 1L
// op2 from ulong.MinValue to (ulong)long.MaxValue
long add = op1 + (long)op2;
if (add < (long)ulong.MinValue)
{
context.Fpsr |= FPSR.Qc;
return ulong.MinValue;
}
else
{
return (ulong)add;
}
}
}
#endregion
#region "Count"
public static ulong CountLeadingSigns(ulong value, int size) // size is 8, 16, 32 or 64 (SIMD&FP or Base Inst.).
{
value ^= value >> 1;
int highBit = size - 2;
for (int bit = highBit; bit >= 0; bit--)
{
if (((int)(value >> bit) & 0b1) != 0)
{
return (ulong)(highBit - bit);
}
}
return (ulong)(size - 1);
}
private static readonly byte[] ClzNibbleTbl = { 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 };
public static ulong CountLeadingZeros(ulong value, int size) // size is 8, 16, 32 or 64 (SIMD&FP or Base Inst.).
{
if (value == 0ul)
{
return (ulong)size;
}
int nibbleIdx = size;
int preCount, count = 0;
do
{
nibbleIdx -= 4;
preCount = ClzNibbleTbl[(int)(value >> nibbleIdx) & 0b1111];
count += preCount;
}
while (preCount == 4);
return (ulong)count;
}
public static ulong CountSetBits8(ulong value) // "size" is 8 (SIMD&FP Inst.).
{
value = ((value >> 1) & 0x55ul) + (value & 0x55ul);
value = ((value >> 2) & 0x33ul) + (value & 0x33ul);
return (value >> 4) + (value & 0x0ful);
}
#endregion
#region "Table"
public static V128 Tbl1(V128 vector, int bytes, V128 tb0)
{
return TblOrTbx(default, vector, bytes, tb0);
}
public static V128 Tbl2(V128 vector, int bytes, V128 tb0, V128 tb1)
{
return TblOrTbx(default, vector, bytes, tb0, tb1);
}
public static V128 Tbl3(V128 vector, int bytes, V128 tb0, V128 tb1, V128 tb2)
{
return TblOrTbx(default, vector, bytes, tb0, tb1, tb2);
}
public static V128 Tbl4(V128 vector, int bytes, V128 tb0, V128 tb1, V128 tb2, V128 tb3)
{
return TblOrTbx(default, vector, bytes, tb0, tb1, tb2, tb3);
}
public static V128 Tbx1(V128 dest, V128 vector, int bytes, V128 tb0)
{
return TblOrTbx(dest, vector, bytes, tb0);
}
public static V128 Tbx2(V128 dest, V128 vector, int bytes, V128 tb0, V128 tb1)
{
return TblOrTbx(dest, vector, bytes, tb0, tb1);
}
public static V128 Tbx3(V128 dest, V128 vector, int bytes, V128 tb0, V128 tb1, V128 tb2)
{
return TblOrTbx(dest, vector, bytes, tb0, tb1, tb2);
}
public static V128 Tbx4(V128 dest, V128 vector, int bytes, V128 tb0, V128 tb1, V128 tb2, V128 tb3)
{
return TblOrTbx(dest, vector, bytes, tb0, tb1, tb2, tb3);
}
private static V128 TblOrTbx(V128 dest, V128 vector, int bytes, params V128[] tb)
{
byte[] res = new byte[16];
if (dest != default)
{
Buffer.BlockCopy(dest.ToArray(), 0, res, 0, bytes);
}
byte[] table = new byte[tb.Length * 16];
for (byte index = 0; index < tb.Length; index++)
{
Buffer.BlockCopy(tb[index].ToArray(), 0, table, index * 16, 16);
}
byte[] v = vector.ToArray();
for (byte index = 0; index < bytes; index++)
{
byte tblIndex = v[index];
if (tblIndex < table.Length)
{
res[index] = table[tblIndex];
}
}
return new V128(res);
}
#endregion
#region "Crc32"
private const uint Crc32RevPoly = 0xedb88320;
private const uint Crc32cRevPoly = 0x82f63b78;
public static uint Crc32b(uint crc, byte value) => Crc32 (crc, Crc32RevPoly, value);
public static uint Crc32h(uint crc, ushort value) => Crc32h(crc, Crc32RevPoly, value);
public static uint Crc32w(uint crc, uint value) => Crc32w(crc, Crc32RevPoly, value);
public static uint Crc32x(uint crc, ulong value) => Crc32x(crc, Crc32RevPoly, value);
public static uint Crc32cb(uint crc, byte value) => Crc32 (crc, Crc32cRevPoly, value);
public static uint Crc32ch(uint crc, ushort value) => Crc32h(crc, Crc32cRevPoly, value);
public static uint Crc32cw(uint crc, uint value) => Crc32w(crc, Crc32cRevPoly, value);
public static uint Crc32cx(uint crc, ulong value) => Crc32x(crc, Crc32cRevPoly, value);
private static uint Crc32h(uint crc, uint poly, ushort val)
{
crc = Crc32(crc, poly, (byte)(val >> 0));
crc = Crc32(crc, poly, (byte)(val >> 8));
return crc;
}
private static uint Crc32w(uint crc, uint poly, uint val)
{
crc = Crc32(crc, poly, (byte)(val >> 0));
crc = Crc32(crc, poly, (byte)(val >> 8));
crc = Crc32(crc, poly, (byte)(val >> 16));
crc = Crc32(crc, poly, (byte)(val >> 24));
return crc;
}
private static uint Crc32x(uint crc, uint poly, ulong val)
{
crc = Crc32(crc, poly, (byte)(val >> 0));
crc = Crc32(crc, poly, (byte)(val >> 8));
crc = Crc32(crc, poly, (byte)(val >> 16));
crc = Crc32(crc, poly, (byte)(val >> 24));
crc = Crc32(crc, poly, (byte)(val >> 32));
crc = Crc32(crc, poly, (byte)(val >> 40));
crc = Crc32(crc, poly, (byte)(val >> 48));
crc = Crc32(crc, poly, (byte)(val >> 56));
return crc;
}
private static uint Crc32(uint crc, uint poly, byte val)
{
crc ^= val;
for (int bit = 7; bit >= 0; bit--)
{
uint mask = (uint)(-(int)(crc & 1));
crc = (crc >> 1) ^ (poly & mask);
}
return crc;
}
#endregion
#region "Aes"
public static V128 Decrypt(V128 value, V128 roundKey)
{
return CryptoHelper.AesInvSubBytes(CryptoHelper.AesInvShiftRows(value ^ roundKey));
}
public static V128 Encrypt(V128 value, V128 roundKey)
{
return CryptoHelper.AesSubBytes(CryptoHelper.AesShiftRows(value ^ roundKey));
}
public static V128 InverseMixColumns(V128 value)
{
return CryptoHelper.AesInvMixColumns(value);
}
public static V128 MixColumns(V128 value)
{
return CryptoHelper.AesMixColumns(value);
}
#endregion
#region "Sha1"
public static V128 HashChoose(V128 hash_abcd, uint hash_e, V128 wk)
{
for (int e = 0; e <= 3; e++)
{
uint t = ShaChoose(hash_abcd.GetUInt32(1),
hash_abcd.GetUInt32(2),
hash_abcd.GetUInt32(3));
hash_e += Rol(hash_abcd.GetUInt32(0), 5) + t + wk.GetUInt32(e);
t = Rol(hash_abcd.GetUInt32(1), 30);
hash_abcd.Insert(1, t);
Rol32_160(ref hash_e, ref hash_abcd);
}
return hash_abcd;
}
public static uint FixedRotate(uint hash_e)
{
return hash_e.Rol(30);
}
public static V128 HashMajority(V128 hash_abcd, uint hash_e, V128 wk)
{
for (int e = 0; e <= 3; e++)
{
uint t = ShaMajority(hash_abcd.GetUInt32(1),
hash_abcd.GetUInt32(2),
hash_abcd.GetUInt32(3));
hash_e += Rol(hash_abcd.GetUInt32(0), 5) + t + wk.GetUInt32(e);
t = Rol(hash_abcd.GetUInt32(1), 30);
hash_abcd.Insert(1, t);
Rol32_160(ref hash_e, ref hash_abcd);
}
return hash_abcd;
}
public static V128 HashParity(V128 hash_abcd, uint hash_e, V128 wk)
{
for (int e = 0; e <= 3; e++)
{
uint t = ShaParity(hash_abcd.GetUInt32(1),
hash_abcd.GetUInt32(2),
hash_abcd.GetUInt32(3));
hash_e += Rol(hash_abcd.GetUInt32(0), 5) + t + wk.GetUInt32(e);
t = Rol(hash_abcd.GetUInt32(1), 30);
hash_abcd.Insert(1, t);
Rol32_160(ref hash_e, ref hash_abcd);
}
return hash_abcd;
}
public static V128 Sha1SchedulePart1(V128 w0_3, V128 w4_7, V128 w8_11)
{
ulong t2 = w4_7.GetUInt64(0);
ulong t1 = w0_3.GetUInt64(1);
V128 result = new V128(t1, t2);
return result ^ (w0_3 ^ w8_11);
}
public static V128 Sha1SchedulePart2(V128 tw0_3, V128 w12_15)
{
V128 t = tw0_3 ^ (w12_15 >> 32);
uint tE0 = t.GetUInt32(0);
uint tE1 = t.GetUInt32(1);
uint tE2 = t.GetUInt32(2);
uint tE3 = t.GetUInt32(3);
return new V128(tE0.Rol(1), tE1.Rol(1), tE2.Rol(1), tE3.Rol(1) ^ tE0.Rol(2));
}
private static void Rol32_160(ref uint y, ref V128 x)
{
uint xE3 = x.GetUInt32(3);
x <<= 32;
x.Insert(0, y);
y = xE3;
}
private static uint ShaChoose(uint x, uint y, uint z)
{
return ((y ^ z) & x) ^ z;
}
private static uint ShaMajority(uint x, uint y, uint z)
{
return (x & y) | ((x | y) & z);
}
private static uint ShaParity(uint x, uint y, uint z)
{
return x ^ y ^ z;
}
private static uint Rol(this uint value, int count)
{
return (value << count) | (value >> (32 - count));
}
#endregion
#region "Sha256"
public static V128 HashLower(V128 hash_abcd, V128 hash_efgh, V128 wk)
{
return Sha256Hash(hash_abcd, hash_efgh, wk, part1: true);
}
public static V128 HashUpper(V128 hash_efgh, V128 hash_abcd, V128 wk)
{
return Sha256Hash(hash_abcd, hash_efgh, wk, part1: false);
}
public static V128 Sha256SchedulePart1(V128 w0_3, V128 w4_7)
{
V128 result = new V128();
for (int e = 0; e <= 3; e++)
{
uint elt = (e <= 2 ? w0_3 : w4_7).GetUInt32(e <= 2 ? e + 1 : 0);
elt = elt.Ror(7) ^ elt.Ror(18) ^ elt.Lsr(3);
elt += w0_3.GetUInt32(e);
result.Insert(e, elt);
}
return result;
}
public static V128 Sha256SchedulePart2(V128 w0_3, V128 w8_11, V128 w12_15)
{
V128 result = new V128();
ulong t1 = w12_15.GetUInt64(1);
for (int e = 0; e <= 1; e++)
{
uint elt = t1.ULongPart(e);
elt = elt.Ror(17) ^ elt.Ror(19) ^ elt.Lsr(10);
elt += w0_3.GetUInt32(e) + w8_11.GetUInt32(e + 1);
result.Insert(e, elt);
}
t1 = result.GetUInt64(0);
for (int e = 2; e <= 3; e++)
{
uint elt = t1.ULongPart(e - 2);
elt = elt.Ror(17) ^ elt.Ror(19) ^ elt.Lsr(10);
elt += w0_3.GetUInt32(e) + (e == 2 ? w8_11 : w12_15).GetUInt32(e == 2 ? 3 : 0);
result.Insert(e, elt);
}
return result;
}
private static V128 Sha256Hash(V128 x, V128 y, V128 w, bool part1)
{
for (int e = 0; e <= 3; e++)
{
uint chs = ShaChoose(y.GetUInt32(0),
y.GetUInt32(1),
y.GetUInt32(2));
uint maj = ShaMajority(x.GetUInt32(0),
x.GetUInt32(1),
x.GetUInt32(2));
uint t1 = y.GetUInt32(3) + ShaHashSigma1(y.GetUInt32(0)) + chs + w.GetUInt32(e);
uint t2 = t1 + x.GetUInt32(3);
x.Insert(3, t2);
t2 = t1 + ShaHashSigma0(x.GetUInt32(0)) + maj;
y.Insert(3, t2);
Rol32_256(ref y, ref x);
}
return part1 ? x : y;
}
private static void Rol32_256(ref V128 y, ref V128 x)
{
uint yE3 = y.GetUInt32(3);
uint xE3 = x.GetUInt32(3);
y <<= 32;
x <<= 32;
y.Insert(0, xE3);
x.Insert(0, yE3);
}
private static uint ShaHashSigma0(uint x)
{
return x.Ror(2) ^ x.Ror(13) ^ x.Ror(22);
}
private static uint ShaHashSigma1(uint x)
{
return x.Ror(6) ^ x.Ror(11) ^ x.Ror(25);
}
private static uint Ror(this uint value, int count)
{
return (value >> count) | (value << (32 - count));
}
private static uint Lsr(this uint value, int count)
{
return value >> count;
}
private static uint ULongPart(this ulong value, int part)
{
return part == 0
? (uint)(value & 0xFFFFFFFFUL)
: (uint)(value >> 32);
}
#endregion
}
}