1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-10-01 12:30:00 +02:00
Ryujinx/Ryujinx.Graphics.Gpu/Memory/BufferManager.cs
riperiperi 1623ab524f
Improve Buffer Textures and flush Image Stores (#2088)
* Improve Buffer Textures and flush Image Stores

Fixes a number of issues with buffer textures:

- Reworked Buffer Textures to create their buffers in the TextureManager, then bind them with the BufferManager later.
  - Fixes an issue where a buffer texture's buffer could be invalidated after it is bound, but before use.
- Fixed width unpacking for large buffer textures. The width is now 32-bit rather than 16.
- Force buffer textures to be rebound whenever any buffer is created, as using the handle id wasn't reliable, and the cost of binding isn't too high.

Fixes vertex explosions and flickering animations in UE4 games.

* Set ImageStore flag... for ImageStore.

* Check the offset and size.
2021-03-08 18:43:39 -03:00

1025 lines
No EOL
39 KiB
C#

using Ryujinx.Common;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Image;
using Ryujinx.Graphics.Gpu.State;
using Ryujinx.Graphics.Shader;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
namespace Ryujinx.Graphics.Gpu.Memory
{
/// <summary>
/// Buffer manager.
/// </summary>
class BufferManager
{
private const int StackToHeapThreshold = 16;
private const int OverlapsBufferInitialCapacity = 10;
private const int OverlapsBufferMaxCapacity = 10000;
private const ulong BufferAlignmentSize = 0x1000;
private const ulong BufferAlignmentMask = BufferAlignmentSize - 1;
private GpuContext _context;
private RangeList<Buffer> _buffers;
private Buffer[] _bufferOverlaps;
private IndexBuffer _indexBuffer;
private VertexBuffer[] _vertexBuffers;
private BufferBounds[] _transformFeedbackBuffers;
private List<BufferTextureBinding> _bufferTextures;
/// <summary>
/// Holds shader stage buffer state and binding information.
/// </summary>
private class BuffersPerStage
{
/// <summary>
/// Shader buffer binding information.
/// </summary>
public BufferDescriptor[] Bindings { get; }
/// <summary>
/// Buffer regions.
/// </summary>
public BufferBounds[] Buffers { get; }
/// <summary>
/// Total amount of buffers used on the shader.
/// </summary>
public int Count { get; private set; }
/// <summary>
/// Creates a new instance of the shader stage buffer information.
/// </summary>
/// <param name="count">Maximum amount of buffers that the shader stage can use</param>
public BuffersPerStage(int count)
{
Bindings = new BufferDescriptor[count];
Buffers = new BufferBounds[count];
}
/// <summary>
/// Sets the region of a buffer at a given slot.
/// </summary>
/// <param name="index">Buffer slot</param>
/// <param name="address">Region virtual address</param>
/// <param name="size">Region size in bytes</param>
/// <param name="flags">Buffer usage flags</param>
public void SetBounds(int index, ulong address, ulong size, BufferUsageFlags flags = BufferUsageFlags.None)
{
Buffers[index] = new BufferBounds(address, size, flags);
}
/// <summary>
/// Sets shader buffer binding information.
/// </summary>
/// <param name="descriptors">Buffer binding information</param>
public void SetBindings(ReadOnlyCollection<BufferDescriptor> descriptors)
{
if (descriptors == null)
{
Count = 0;
return;
}
descriptors.CopyTo(Bindings, 0);
Count = descriptors.Count;
}
}
private BuffersPerStage _cpStorageBuffers;
private BuffersPerStage _cpUniformBuffers;
private BuffersPerStage[] _gpStorageBuffers;
private BuffersPerStage[] _gpUniformBuffers;
private int _cpStorageBufferBindings;
private int _cpUniformBufferBindings;
private int _gpStorageBufferBindings;
private int _gpUniformBufferBindings;
private bool _gpStorageBuffersDirty;
private bool _gpUniformBuffersDirty;
private bool _indexBufferDirty;
private bool _vertexBuffersDirty;
private uint _vertexBuffersEnableMask;
private bool _transformFeedbackBuffersDirty;
private bool _rebind;
/// <summary>
/// Creates a new instance of the buffer manager.
/// </summary>
/// <param name="context">The GPU context that the buffer manager belongs to</param>
public BufferManager(GpuContext context)
{
_context = context;
_buffers = new RangeList<Buffer>();
_bufferOverlaps = new Buffer[OverlapsBufferInitialCapacity];
_vertexBuffers = new VertexBuffer[Constants.TotalVertexBuffers];
_transformFeedbackBuffers = new BufferBounds[Constants.TotalTransformFeedbackBuffers];
_cpStorageBuffers = new BuffersPerStage(Constants.TotalCpStorageBuffers);
_cpUniformBuffers = new BuffersPerStage(Constants.TotalCpUniformBuffers);
_gpStorageBuffers = new BuffersPerStage[Constants.ShaderStages];
_gpUniformBuffers = new BuffersPerStage[Constants.ShaderStages];
for (int index = 0; index < Constants.ShaderStages; index++)
{
_gpStorageBuffers[index] = new BuffersPerStage(Constants.TotalGpStorageBuffers);
_gpUniformBuffers[index] = new BuffersPerStage(Constants.TotalGpUniformBuffers);
}
_bufferTextures = new List<BufferTextureBinding>();
}
/// <summary>
/// Sets the memory range with the index buffer data, to be used for subsequent draw calls.
/// </summary>
/// <param name="gpuVa">Start GPU virtual address of the index buffer</param>
/// <param name="size">Size, in bytes, of the index buffer</param>
/// <param name="type">Type of each index buffer element</param>
public void SetIndexBuffer(ulong gpuVa, ulong size, IndexType type)
{
ulong address = TranslateAndCreateBuffer(gpuVa, size);
_indexBuffer.Address = address;
_indexBuffer.Size = size;
_indexBuffer.Type = type;
_indexBufferDirty = true;
}
/// <summary>
/// Sets a new index buffer that overrides the one set on the call to <see cref="CommitGraphicsBindings"/>.
/// </summary>
/// <param name="buffer">Buffer to be used as index buffer</param>
/// <param name="type">Type of each index buffer element</param>
public void SetIndexBuffer(BufferRange buffer, IndexType type)
{
_context.Renderer.Pipeline.SetIndexBuffer(buffer, type);
_indexBufferDirty = true;
}
/// <summary>
/// Sets the memory range with vertex buffer data, to be used for subsequent draw calls.
/// </summary>
/// <param name="index">Index of the vertex buffer (up to 16)</param>
/// <param name="gpuVa">GPU virtual address of the buffer</param>
/// <param name="size">Size in bytes of the buffer</param>
/// <param name="stride">Stride of the buffer, defined as the number of bytes of each vertex</param>
/// <param name="divisor">Vertex divisor of the buffer, for instanced draws</param>
public void SetVertexBuffer(int index, ulong gpuVa, ulong size, int stride, int divisor)
{
ulong address = TranslateAndCreateBuffer(gpuVa, size);
_vertexBuffers[index].Address = address;
_vertexBuffers[index].Size = size;
_vertexBuffers[index].Stride = stride;
_vertexBuffers[index].Divisor = divisor;
_vertexBuffersDirty = true;
if (address != 0)
{
_vertexBuffersEnableMask |= 1u << index;
}
else
{
_vertexBuffersEnableMask &= ~(1u << index);
}
}
/// <summary>
/// Sets a transform feedback buffer on the graphics pipeline.
/// The output from the vertex transformation stages are written into the feedback buffer.
/// </summary>
/// <param name="index">Index of the transform feedback buffer</param>
/// <param name="gpuVa">Start GPU virtual address of the buffer</param>
/// <param name="size">Size in bytes of the transform feedback buffer</param>
public void SetTransformFeedbackBuffer(int index, ulong gpuVa, ulong size)
{
ulong address = TranslateAndCreateBuffer(gpuVa, size);
_transformFeedbackBuffers[index] = new BufferBounds(address, size);
_transformFeedbackBuffersDirty = true;
}
/// <summary>
/// Sets a storage buffer on the compute pipeline.
/// Storage buffers can be read and written to on shaders.
/// </summary>
/// <param name="index">Index of the storage buffer</param>
/// <param name="gpuVa">Start GPU virtual address of the buffer</param>
/// <param name="size">Size in bytes of the storage buffer</param>
/// <param name="flags">Buffer usage flags</param>
public void SetComputeStorageBuffer(int index, ulong gpuVa, ulong size, BufferUsageFlags flags)
{
size += gpuVa & ((ulong)_context.Capabilities.StorageBufferOffsetAlignment - 1);
gpuVa = BitUtils.AlignDown(gpuVa, _context.Capabilities.StorageBufferOffsetAlignment);
ulong address = TranslateAndCreateBuffer(gpuVa, size);
_cpStorageBuffers.SetBounds(index, address, size, flags);
}
/// <summary>
/// Sets a storage buffer on the graphics pipeline.
/// Storage buffers can be read and written to on shaders.
/// </summary>
/// <param name="stage">Index of the shader stage</param>
/// <param name="index">Index of the storage buffer</param>
/// <param name="gpuVa">Start GPU virtual address of the buffer</param>
/// <param name="size">Size in bytes of the storage buffer</param>
/// <param name="flags">Buffer usage flags</param>
public void SetGraphicsStorageBuffer(int stage, int index, ulong gpuVa, ulong size, BufferUsageFlags flags)
{
size += gpuVa & ((ulong)_context.Capabilities.StorageBufferOffsetAlignment - 1);
gpuVa = BitUtils.AlignDown(gpuVa, _context.Capabilities.StorageBufferOffsetAlignment);
ulong address = TranslateAndCreateBuffer(gpuVa, size);
if (_gpStorageBuffers[stage].Buffers[index].Address != address ||
_gpStorageBuffers[stage].Buffers[index].Size != size)
{
_gpStorageBuffersDirty = true;
}
_gpStorageBuffers[stage].SetBounds(index, address, size, flags);
}
/// <summary>
/// Sets a uniform buffer on the compute pipeline.
/// Uniform buffers are read-only from shaders, and have a small capacity.
/// </summary>
/// <param name="index">Index of the uniform buffer</param>
/// <param name="gpuVa">Start GPU virtual address of the buffer</param>
/// <param name="size">Size in bytes of the storage buffer</param>
public void SetComputeUniformBuffer(int index, ulong gpuVa, ulong size)
{
ulong address = TranslateAndCreateBuffer(gpuVa, size);
_cpUniformBuffers.SetBounds(index, address, size);
}
/// <summary>
/// Sets a uniform buffer on the graphics pipeline.
/// Uniform buffers are read-only from shaders, and have a small capacity.
/// </summary>
/// <param name="stage">Index of the shader stage</param>
/// <param name="index">Index of the uniform buffer</param>
/// <param name="gpuVa">Start GPU virtual address of the buffer</param>
/// <param name="size">Size in bytes of the storage buffer</param>
public void SetGraphicsUniformBuffer(int stage, int index, ulong gpuVa, ulong size)
{
ulong address = TranslateAndCreateBuffer(gpuVa, size);
_gpUniformBuffers[stage].SetBounds(index, address, size);
_gpUniformBuffersDirty = true;
}
/// <summary>
/// Sets the binding points for the storage buffers bound on the compute pipeline.
/// </summary>
/// <param name="descriptors">Buffer descriptors with the binding point values</param>
public void SetComputeStorageBufferBindings(ReadOnlyCollection<BufferDescriptor> descriptors)
{
_cpStorageBuffers.SetBindings(descriptors);
_cpStorageBufferBindings = descriptors.Count != 0 ? descriptors.Max(x => x.Binding) + 1 : 0;
}
/// <summary>
/// Sets the binding points for the storage buffers bound on the graphics pipeline.
/// </summary>
/// <param name="stage">Index of the shader stage</param>
/// <param name="descriptors">Buffer descriptors with the binding point values</param>
public void SetGraphicsStorageBufferBindings(int stage, ReadOnlyCollection<BufferDescriptor> descriptors)
{
_gpStorageBuffers[stage].SetBindings(descriptors);
_gpStorageBuffersDirty = true;
}
/// <summary>
/// Sets the total number of storage buffer bindings used.
/// </summary>
/// <param name="count">Number of storage buffer bindings used</param>
public void SetGraphicsStorageBufferBindingsCount(int count)
{
_gpStorageBufferBindings = count;
}
/// <summary>
/// Sets the binding points for the uniform buffers bound on the compute pipeline.
/// </summary>
/// <param name="descriptors">Buffer descriptors with the binding point values</param>
public void SetComputeUniformBufferBindings(ReadOnlyCollection<BufferDescriptor> descriptors)
{
_cpUniformBuffers.SetBindings(descriptors);
_cpUniformBufferBindings = descriptors.Count != 0 ? descriptors.Max(x => x.Binding) + 1 : 0;
}
/// <summary>
/// Sets the enabled uniform buffers mask on the graphics pipeline.
/// Each bit set on the mask indicates that the respective buffer index is enabled.
/// </summary>
/// <param name="stage">Index of the shader stage</param>
/// <param name="descriptors">Buffer descriptors with the binding point values</param>
public void SetGraphicsUniformBufferBindings(int stage, ReadOnlyCollection<BufferDescriptor> descriptors)
{
_gpUniformBuffers[stage].SetBindings(descriptors);
_gpUniformBuffersDirty = true;
}
/// <summary>
/// Sets the total number of uniform buffer bindings used.
/// </summary>
/// <param name="count">Number of uniform buffer bindings used</param>
public void SetGraphicsUniformBufferBindingsCount(int count)
{
_gpUniformBufferBindings = count;
}
/// <summary>
/// Gets a bit mask indicating which compute uniform buffers are currently bound.
/// </summary>
/// <returns>Mask where each bit set indicates a bound constant buffer</returns>
public uint GetComputeUniformBufferUseMask()
{
uint mask = 0;
for (int i = 0; i < _cpUniformBuffers.Buffers.Length; i++)
{
if (_cpUniformBuffers.Buffers[i].Address != 0)
{
mask |= 1u << i;
}
}
return mask;
}
/// <summary>
/// Gets a bit mask indicating which graphics uniform buffers are currently bound.
/// </summary>
/// <param name="stage">Index of the shader stage</param>
/// <returns>Mask where each bit set indicates a bound constant buffer</returns>
public uint GetGraphicsUniformBufferUseMask(int stage)
{
uint mask = 0;
for (int i = 0; i < _gpUniformBuffers[stage].Buffers.Length; i++)
{
if (_gpUniformBuffers[stage].Buffers[i].Address != 0)
{
mask |= 1u << i;
}
}
return mask;
}
/// <summary>
/// Handles removal of buffers written to a memory region being unmapped.
/// </summary>
/// <param name="sender">Sender object</param>
/// <param name="e">Event arguments</param>
public void MemoryUnmappedHandler(object sender, UnmapEventArgs e)
{
Buffer[] overlaps = new Buffer[10];
int overlapCount;
ulong address = _context.MemoryManager.Translate(e.Address);
ulong size = e.Size;
lock (_buffers)
{
overlapCount = _buffers.FindOverlaps(address, size, ref overlaps);
}
for (int i = 0; i < overlapCount; i++)
{
overlaps[i].Unmapped(address, size);
}
}
/// <summary>
/// Performs address translation of the GPU virtual address, and creates a
/// new buffer, if needed, for the specified range.
/// </summary>
/// <param name="gpuVa">Start GPU virtual address of the buffer</param>
/// <param name="size">Size in bytes of the buffer</param>
/// <returns>CPU virtual address of the buffer, after address translation</returns>
private ulong TranslateAndCreateBuffer(ulong gpuVa, ulong size)
{
if (gpuVa == 0)
{
return 0;
}
ulong address = _context.MemoryManager.Translate(gpuVa);
if (address == MemoryManager.PteUnmapped)
{
return 0;
}
CreateBuffer(address, size);
return address;
}
/// <summary>
/// Creates a new buffer for the specified range, if it does not yet exist.
/// This can be used to ensure the existance of a buffer.
/// </summary>
/// <param name="address">Address of the buffer in memory</param>
/// <param name="size">Size of the buffer in bytes</param>
public void CreateBuffer(ulong address, ulong size)
{
ulong endAddress = address + size;
ulong alignedAddress = address & ~BufferAlignmentMask;
ulong alignedEndAddress = (endAddress + BufferAlignmentMask) & ~BufferAlignmentMask;
// The buffer must have the size of at least one page.
if (alignedEndAddress == alignedAddress)
{
alignedEndAddress += BufferAlignmentSize;
}
CreateBufferAligned(alignedAddress, alignedEndAddress - alignedAddress);
}
/// <summary>
/// Creates a new buffer for the specified range, if needed.
/// If a buffer where this range can be fully contained already exists,
/// then the creation of a new buffer is not necessary.
/// </summary>
/// <param name="address">Address of the buffer in guest memory</param>
/// <param name="size">Size in bytes of the buffer</param>
private void CreateBufferAligned(ulong address, ulong size)
{
int overlapsCount;
lock (_buffers)
{
overlapsCount = _buffers.FindOverlapsNonOverlapping(address, size, ref _bufferOverlaps);
}
if (overlapsCount != 0)
{
// The buffer already exists. We can just return the existing buffer
// if the buffer we need is fully contained inside the overlapping buffer.
// Otherwise, we must delete the overlapping buffers and create a bigger buffer
// that fits all the data we need. We also need to copy the contents from the
// old buffer(s) to the new buffer.
ulong endAddress = address + size;
if (_bufferOverlaps[0].Address > address || _bufferOverlaps[0].EndAddress < endAddress)
{
for (int index = 0; index < overlapsCount; index++)
{
Buffer buffer = _bufferOverlaps[index];
address = Math.Min(address, buffer.Address);
endAddress = Math.Max(endAddress, buffer.EndAddress);
lock (_buffers)
{
_buffers.Remove(buffer);
}
}
Buffer newBuffer = new Buffer(_context, address, endAddress - address);
newBuffer.SynchronizeMemory(address, endAddress - address);
lock (_buffers)
{
_buffers.Add(newBuffer);
}
for (int index = 0; index < overlapsCount; index++)
{
Buffer buffer = _bufferOverlaps[index];
int dstOffset = (int)(buffer.Address - newBuffer.Address);
buffer.SynchronizeMemory(buffer.Address, buffer.Size);
buffer.CopyTo(newBuffer, dstOffset);
newBuffer.InheritModifiedRanges(buffer);
buffer.Dispose();
}
// Existing buffers were modified, we need to rebind everything.
_rebind = true;
}
}
else
{
// No overlap, just create a new buffer.
Buffer buffer = new Buffer(_context, address, size);
lock (_buffers)
{
_buffers.Add(buffer);
}
}
ShrinkOverlapsBufferIfNeeded();
}
/// <summary>
/// Resizes the temporary buffer used for range list intersection results, if it has grown too much.
/// </summary>
private void ShrinkOverlapsBufferIfNeeded()
{
if (_bufferOverlaps.Length > OverlapsBufferMaxCapacity)
{
Array.Resize(ref _bufferOverlaps, OverlapsBufferMaxCapacity);
}
}
/// <summary>
/// Gets the address of the compute uniform buffer currently bound at the given index.
/// </summary>
/// <param name="index">Index of the uniform buffer binding</param>
/// <returns>The uniform buffer address, or an undefined value if the buffer is not currently bound</returns>
public ulong GetComputeUniformBufferAddress(int index)
{
return _cpUniformBuffers.Buffers[index].Address;
}
/// <summary>
/// Gets the address of the graphics uniform buffer currently bound at the given index.
/// </summary>
/// <param name="stage">Index of the shader stage</param>
/// <param name="index">Index of the uniform buffer binding</param>
/// <returns>The uniform buffer address, or an undefined value if the buffer is not currently bound</returns>
public ulong GetGraphicsUniformBufferAddress(int stage, int index)
{
return _gpUniformBuffers[stage].Buffers[index].Address;
}
/// <summary>
/// Ensures that the compute engine bindings are visible to the host GPU.
/// Note: this actually performs the binding using the host graphics API.
/// </summary>
public void CommitComputeBindings()
{
int sCount = _cpStorageBufferBindings;
Span<BufferRange> sRanges = sCount < StackToHeapThreshold ? stackalloc BufferRange[sCount] : new BufferRange[sCount];
for (int index = 0; index < _cpStorageBuffers.Count; index++)
{
ref var bindingInfo = ref _cpStorageBuffers.Bindings[index];
BufferBounds bounds = _cpStorageBuffers.Buffers[bindingInfo.Slot];
if (bounds.Address != 0)
{
// The storage buffer size is not reliable (it might be lower than the actual size),
// so we bind the entire buffer to allow otherwise out of range accesses to work.
sRanges[bindingInfo.Binding] = GetBufferRangeTillEnd(
bounds.Address,
bounds.Size,
bounds.Flags.HasFlag(BufferUsageFlags.Write));
}
}
_context.Renderer.Pipeline.SetStorageBuffers(sRanges);
int uCount = _cpUniformBufferBindings;
Span<BufferRange> uRanges = uCount < StackToHeapThreshold ? stackalloc BufferRange[uCount] : new BufferRange[uCount];
for (int index = 0; index < _cpUniformBuffers.Count; index++)
{
ref var bindingInfo = ref _cpUniformBuffers.Bindings[index];
BufferBounds bounds = _cpUniformBuffers.Buffers[bindingInfo.Slot];
if (bounds.Address != 0)
{
uRanges[bindingInfo.Binding] = GetBufferRange(bounds.Address, bounds.Size);
}
}
_context.Renderer.Pipeline.SetUniformBuffers(uRanges);
CommitBufferTextureBindings();
// Force rebind after doing compute work.
_rebind = true;
}
/// <summary>
/// Commit any queued buffer texture bindings.
/// </summary>
private void CommitBufferTextureBindings()
{
if (_bufferTextures.Count > 0)
{
foreach (var binding in _bufferTextures)
{
binding.Texture.SetStorage(GetBufferRange(binding.Address, binding.Size, binding.BindingInfo.Flags.HasFlag(TextureUsageFlags.ImageStore)));
// The texture must be rebound to use the new storage if it was updated.
if (binding.IsImage)
{
_context.Renderer.Pipeline.SetImage(binding.BindingInfo.Binding, binding.Texture, binding.Format);
}
else
{
_context.Renderer.Pipeline.SetTexture(binding.BindingInfo.Binding, binding.Texture);
}
}
_bufferTextures.Clear();
}
}
/// <summary>
/// Ensures that the graphics engine bindings are visible to the host GPU.
/// Note: this actually performs the binding using the host graphics API.
/// </summary>
public void CommitGraphicsBindings()
{
if (_indexBufferDirty || _rebind)
{
_indexBufferDirty = false;
if (_indexBuffer.Address != 0)
{
BufferRange buffer = GetBufferRange(_indexBuffer.Address, _indexBuffer.Size);
_context.Renderer.Pipeline.SetIndexBuffer(buffer, _indexBuffer.Type);
}
}
else if (_indexBuffer.Address != 0)
{
SynchronizeBufferRange(_indexBuffer.Address, _indexBuffer.Size);
}
uint vbEnableMask = _vertexBuffersEnableMask;
if (_vertexBuffersDirty || _rebind)
{
_vertexBuffersDirty = false;
Span<VertexBufferDescriptor> vertexBuffers = stackalloc VertexBufferDescriptor[Constants.TotalVertexBuffers];
for (int index = 0; (vbEnableMask >> index) != 0; index++)
{
VertexBuffer vb = _vertexBuffers[index];
if (vb.Address == 0)
{
continue;
}
BufferRange buffer = GetBufferRange(vb.Address, vb.Size);
vertexBuffers[index] = new VertexBufferDescriptor(buffer, vb.Stride, vb.Divisor);
}
_context.Renderer.Pipeline.SetVertexBuffers(vertexBuffers);
}
else
{
for (int index = 0; (vbEnableMask >> index) != 0; index++)
{
VertexBuffer vb = _vertexBuffers[index];
if (vb.Address == 0)
{
continue;
}
SynchronizeBufferRange(vb.Address, vb.Size);
}
}
if (_transformFeedbackBuffersDirty || _rebind)
{
_transformFeedbackBuffersDirty = false;
Span<BufferRange> tfbs = stackalloc BufferRange[Constants.TotalTransformFeedbackBuffers];
for (int index = 0; index < Constants.TotalTransformFeedbackBuffers; index++)
{
BufferBounds tfb = _transformFeedbackBuffers[index];
if (tfb.Address == 0)
{
tfbs[index] = BufferRange.Empty;
continue;
}
tfbs[index] = GetBufferRange(tfb.Address, tfb.Size);
}
_context.Renderer.Pipeline.SetTransformFeedbackBuffers(tfbs);
}
else
{
for (int index = 0; index < Constants.TotalTransformFeedbackBuffers; index++)
{
BufferBounds tfb = _transformFeedbackBuffers[index];
if (tfb.Address == 0)
{
continue;
}
SynchronizeBufferRange(tfb.Address, tfb.Size);
}
}
if (_gpStorageBuffersDirty || _rebind)
{
_gpStorageBuffersDirty = false;
BindBuffers(_gpStorageBuffers, isStorage: true);
}
else
{
UpdateBuffers(_gpStorageBuffers);
}
if (_gpUniformBuffersDirty || _rebind)
{
_gpUniformBuffersDirty = false;
BindBuffers(_gpUniformBuffers, isStorage: false);
}
else
{
UpdateBuffers(_gpUniformBuffers);
}
CommitBufferTextureBindings();
_rebind = false;
}
/// <summary>
/// Bind respective buffer bindings on the host API.
/// </summary>
/// <param name="bindings">Bindings to bind</param>
/// <param name="isStorage">True to bind as storage buffer, false to bind as uniform buffers</param>
private void BindBuffers(BuffersPerStage[] bindings, bool isStorage)
{
int count = isStorage ? _gpStorageBufferBindings : _gpUniformBufferBindings;
Span<BufferRange> ranges = count < StackToHeapThreshold ? stackalloc BufferRange[count] : new BufferRange[count];
for (ShaderStage stage = ShaderStage.Vertex; stage <= ShaderStage.Fragment; stage++)
{
ref var buffers = ref bindings[(int)stage - 1];
for (int index = 0; index < buffers.Count; index++)
{
ref var bindingInfo = ref buffers.Bindings[index];
BufferBounds bounds = buffers.Buffers[bindingInfo.Slot];
if (bounds.Address != 0)
{
ranges[bindingInfo.Binding] = isStorage
? GetBufferRangeTillEnd(bounds.Address, bounds.Size, bounds.Flags.HasFlag(BufferUsageFlags.Write))
: GetBufferRange(bounds.Address, bounds.Size, bounds.Flags.HasFlag(BufferUsageFlags.Write));
}
}
}
if (isStorage)
{
_context.Renderer.Pipeline.SetStorageBuffers(ranges);
}
else
{
_context.Renderer.Pipeline.SetUniformBuffers(ranges);
}
}
/// <summary>
/// Updates data for the already bound buffer bindings.
/// </summary>
/// <param name="bindings">Bindings to update</param>
private void UpdateBuffers(BuffersPerStage[] bindings)
{
for (ShaderStage stage = ShaderStage.Vertex; stage <= ShaderStage.Fragment; stage++)
{
ref var buffers = ref bindings[(int)stage - 1];
for (int index = 0; index < buffers.Count; index++)
{
ref var binding = ref buffers.Bindings[index];
BufferBounds bounds = buffers.Buffers[binding.Slot];
if (bounds.Address == 0)
{
continue;
}
SynchronizeBufferRange(bounds.Address, bounds.Size);
}
}
}
/// <summary>
/// Sets the buffer storage of a buffer texture. This will be bound when the buffer manager commits bindings.
/// </summary>
/// <param name="texture">Buffer texture</param>
/// <param name="address">Address of the buffer in memory</param>
/// <param name="size">Size of the buffer in bytes</param>
/// <param name="bindingInfo">Binding info for the buffer texture</param>
/// <param name="format">Format of the buffer texture</param>
/// <param name="isImage">Whether the binding is for an image or a sampler</param>
public void SetBufferTextureStorage(ITexture texture, ulong address, ulong size, TextureBindingInfo bindingInfo, Format format, bool isImage)
{
CreateBuffer(address, size);
_bufferTextures.Add(new BufferTextureBinding(texture, address, size, bindingInfo, format, isImage));
}
/// <summary>
/// Copy a buffer data from a given address to another.
/// </summary>
/// <remarks>
/// This does a GPU side copy.
/// </remarks>
/// <param name="srcVa">GPU virtual address of the copy source</param>
/// <param name="dstVa">GPU virtual address of the copy destination</param>
/// <param name="size">Size in bytes of the copy</param>
public void CopyBuffer(GpuVa srcVa, GpuVa dstVa, ulong size)
{
ulong srcAddress = TranslateAndCreateBuffer(srcVa.Pack(), size);
ulong dstAddress = TranslateAndCreateBuffer(dstVa.Pack(), size);
Buffer srcBuffer = GetBuffer(srcAddress, size);
Buffer dstBuffer = GetBuffer(dstAddress, size);
int srcOffset = (int)(srcAddress - srcBuffer.Address);
int dstOffset = (int)(dstAddress - dstBuffer.Address);
_context.Renderer.Pipeline.CopyBuffer(
srcBuffer.Handle,
dstBuffer.Handle,
srcOffset,
dstOffset,
(int)size);
if (srcBuffer.IsModified(srcAddress, size))
{
dstBuffer.SignalModified(dstAddress, size);
}
else
{
// Optimization: If the data being copied is already in memory, then copy it directly instead of flushing from GPU.
dstBuffer.ClearModified(dstAddress, size);
_context.PhysicalMemory.WriteUntracked(dstAddress, _context.PhysicalMemory.GetSpan(srcAddress, (int)size));
}
}
/// <summary>
/// Clears a buffer at a given address with the specified value.
/// </summary>
/// <remarks>
/// Both the address and size must be aligned to 4 bytes.
/// </remarks>
/// <param name="gpuVa">GPU virtual address of the region to clear</param>
/// <param name="size">Number of bytes to clear</param>
/// <param name="value">Value to be written into the buffer</param>
public void ClearBuffer(GpuVa gpuVa, ulong size, uint value)
{
ulong address = TranslateAndCreateBuffer(gpuVa.Pack(), size);
Buffer buffer = GetBuffer(address, size);
int offset = (int)(address - buffer.Address);
_context.Renderer.Pipeline.ClearBuffer(buffer.Handle, offset, (int)size, value);
buffer.SignalModified(address, size);
}
/// <summary>
/// Gets a buffer sub-range starting at a given memory address.
/// </summary>
/// <param name="address">Start address of the memory range</param>
/// <param name="size">Size in bytes of the memory range</param>
/// <param name="write">Whether the buffer will be written to by this use</param>
/// <returns>The buffer sub-range starting at the given memory address</returns>
private BufferRange GetBufferRangeTillEnd(ulong address, ulong size, bool write = false)
{
return GetBuffer(address, size, write).GetRange(address);
}
/// <summary>
/// Gets a buffer sub-range for a given memory range.
/// </summary>
/// <param name="address">Start address of the memory range</param>
/// <param name="size">Size in bytes of the memory range</param>
/// <param name="write">Whether the buffer will be written to by this use</param>
/// <returns>The buffer sub-range for the given range</returns>
private BufferRange GetBufferRange(ulong address, ulong size, bool write = false)
{
return GetBuffer(address, size, write).GetRange(address, size);
}
/// <summary>
/// Gets a buffer for a given memory range.
/// A buffer overlapping with the specified range is assumed to already exist on the cache.
/// </summary>
/// <param name="address">Start address of the memory range</param>
/// <param name="size">Size in bytes of the memory range</param>
/// <param name="write">Whether the buffer will be written to by this use</param>
/// <returns>The buffer where the range is fully contained</returns>
private Buffer GetBuffer(ulong address, ulong size, bool write = false)
{
Buffer buffer;
if (size != 0)
{
lock (_buffers)
{
buffer = _buffers.FindFirstOverlap(address, size);
}
buffer.SynchronizeMemory(address, size);
if (write)
{
buffer.SignalModified(address, size);
}
}
else
{
lock (_buffers)
{
buffer = _buffers.FindFirstOverlap(address, 1);
}
}
return buffer;
}
/// <summary>
/// Performs guest to host memory synchronization of a given memory range.
/// </summary>
/// <param name="address">Start address of the memory range</param>
/// <param name="size">Size in bytes of the memory range</param>
private void SynchronizeBufferRange(ulong address, ulong size)
{
if (size != 0)
{
Buffer buffer;
lock (_buffers)
{
buffer = _buffers.FindFirstOverlap(address, size);
}
buffer.SynchronizeMemory(address, size);
}
}
/// <summary>
/// Disposes all buffers in the cache.
/// It's an error to use the buffer manager after disposal.
/// </summary>
public void Dispose()
{
lock (_buffers)
{
foreach (Buffer buffer in _buffers)
{
buffer.Dispose();
}
}
}
}
}