1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-10-01 12:30:00 +02:00
Ryujinx/Ryujinx.Graphics.Nvdec/VDec/VideoDecoder.cs
gdkchan b8eb6abecc
Refactor shader GPU state and memory access (#1203)
* Refactor shader GPU state and memory access

* Fix NVDEC project build

* Address PR feedback and add missing XML comments
2020-05-06 11:02:28 +10:00

281 lines
No EOL
12 KiB
C#

using Ryujinx.Graphics.Gpu;
using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Vic;
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.VDec
{
unsafe class VideoDecoder
{
private H264Decoder _h264Decoder;
private Vp9Decoder _vp9Decoder;
private VideoCodec _currentVideoCodec;
private ulong _decoderContextAddress;
private ulong _frameDataAddress;
private ulong _vpxCurrLumaAddress;
private ulong _vpxRef0LumaAddress;
private ulong _vpxRef1LumaAddress;
private ulong _vpxRef2LumaAddress;
private ulong _vpxCurrChromaAddress;
private ulong _vpxRef0ChromaAddress;
private ulong _vpxRef1ChromaAddress;
private ulong _vpxRef2ChromaAddress;
private ulong _vpxProbTablesAddress;
public VideoDecoder()
{
_h264Decoder = new H264Decoder();
_vp9Decoder = new Vp9Decoder();
}
public void Process(GpuContext gpu, int methodOffset, int[] arguments)
{
VideoDecoderMeth method = (VideoDecoderMeth)methodOffset;
switch (method)
{
case VideoDecoderMeth.SetVideoCodec: SetVideoCodec(arguments); break;
case VideoDecoderMeth.Execute: Execute(gpu); break;
case VideoDecoderMeth.SetDecoderCtxAddr: SetDecoderCtxAddr(arguments); break;
case VideoDecoderMeth.SetFrameDataAddr: SetFrameDataAddr(arguments); break;
case VideoDecoderMeth.SetVpxCurrLumaAddr: SetVpxCurrLumaAddr(arguments); break;
case VideoDecoderMeth.SetVpxRef0LumaAddr: SetVpxRef0LumaAddr(arguments); break;
case VideoDecoderMeth.SetVpxRef1LumaAddr: SetVpxRef1LumaAddr(arguments); break;
case VideoDecoderMeth.SetVpxRef2LumaAddr: SetVpxRef2LumaAddr(arguments); break;
case VideoDecoderMeth.SetVpxCurrChromaAddr: SetVpxCurrChromaAddr(arguments); break;
case VideoDecoderMeth.SetVpxRef0ChromaAddr: SetVpxRef0ChromaAddr(arguments); break;
case VideoDecoderMeth.SetVpxRef1ChromaAddr: SetVpxRef1ChromaAddr(arguments); break;
case VideoDecoderMeth.SetVpxRef2ChromaAddr: SetVpxRef2ChromaAddr(arguments); break;
case VideoDecoderMeth.SetVpxProbTablesAddr: SetVpxProbTablesAddr(arguments); break;
}
}
private void SetVideoCodec(int[] arguments)
{
_currentVideoCodec = (VideoCodec)arguments[0];
}
private void Execute(GpuContext gpu)
{
if (_currentVideoCodec == VideoCodec.H264)
{
int frameDataSize = gpu.MemoryAccessor.ReadInt32(_decoderContextAddress + 0x48);
H264ParameterSets Params = gpu.MemoryAccessor.Read<H264ParameterSets>(_decoderContextAddress + 0x58);
H264Matrices matrices = new H264Matrices()
{
ScalingMatrix4 = gpu.MemoryAccessor.ReadBytes(_decoderContextAddress + 0x1c0, 6 * 16),
ScalingMatrix8 = gpu.MemoryAccessor.ReadBytes(_decoderContextAddress + 0x220, 2 * 64)
};
byte[] frameData = gpu.MemoryAccessor.ReadBytes(_frameDataAddress, frameDataSize);
_h264Decoder.Decode(Params, matrices, frameData);
}
else if (_currentVideoCodec == VideoCodec.Vp9)
{
int frameDataSize = gpu.MemoryAccessor.ReadInt32(_decoderContextAddress + 0x30);
Vp9FrameKeys keys = new Vp9FrameKeys()
{
CurrKey = (long)gpu.MemoryManager.Translate(_vpxCurrLumaAddress),
Ref0Key = (long)gpu.MemoryManager.Translate(_vpxRef0LumaAddress),
Ref1Key = (long)gpu.MemoryManager.Translate(_vpxRef1LumaAddress),
Ref2Key = (long)gpu.MemoryManager.Translate(_vpxRef2LumaAddress)
};
Vp9FrameHeader header = ReadStruct<Vp9FrameHeader>(gpu.MemoryAccessor, _decoderContextAddress + 0x48);
Vp9ProbabilityTables probs = new Vp9ProbabilityTables()
{
SegmentationTreeProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x387, 0x7),
SegmentationPredProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x38e, 0x3),
Tx8x8Probs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x470, 0x2),
Tx16x16Probs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x472, 0x4),
Tx32x32Probs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x476, 0x6),
CoefProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x5a0, 0x900),
SkipProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x537, 0x3),
InterModeProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x400, 0x1c),
InterpFilterProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x52a, 0x8),
IsInterProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x41c, 0x4),
CompModeProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x532, 0x5),
SingleRefProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x580, 0xa),
CompRefProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x58a, 0x5),
YModeProbs0 = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x480, 0x20),
YModeProbs1 = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x47c, 0x4),
PartitionProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x4e0, 0x40),
MvJointProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x53b, 0x3),
MvSignProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x53e, 0x3),
MvClassProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x54c, 0x14),
MvClass0BitProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x540, 0x3),
MvBitsProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x56c, 0x14),
MvClass0FrProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x560, 0xc),
MvFrProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x542, 0x6),
MvClass0HpProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x548, 0x2),
MvHpProbs = gpu.MemoryAccessor.ReadBytes(_vpxProbTablesAddress + 0x54a, 0x2)
};
byte[] frameData = gpu.MemoryAccessor.ReadBytes(_frameDataAddress, frameDataSize);
_vp9Decoder.Decode(keys, header, probs, frameData);
}
else
{
ThrowUnimplementedCodec();
}
}
private T ReadStruct<T>(MemoryAccessor accessor, ulong address) where T : struct
{
byte[] data = accessor.ReadBytes(address, Marshal.SizeOf<T>());
unsafe
{
fixed (byte* ptr = data)
{
return Marshal.PtrToStructure<T>((IntPtr)ptr);
}
}
}
private void SetDecoderCtxAddr(int[] arguments)
{
_decoderContextAddress = GetAddress(arguments);
}
private void SetFrameDataAddr(int[] arguments)
{
_frameDataAddress = GetAddress(arguments);
}
private void SetVpxCurrLumaAddr(int[] arguments)
{
_vpxCurrLumaAddress = GetAddress(arguments);
}
private void SetVpxRef0LumaAddr(int[] arguments)
{
_vpxRef0LumaAddress = GetAddress(arguments);
}
private void SetVpxRef1LumaAddr(int[] arguments)
{
_vpxRef1LumaAddress = GetAddress(arguments);
}
private void SetVpxRef2LumaAddr(int[] arguments)
{
_vpxRef2LumaAddress = GetAddress(arguments);
}
private void SetVpxCurrChromaAddr(int[] arguments)
{
_vpxCurrChromaAddress = GetAddress(arguments);
}
private void SetVpxRef0ChromaAddr(int[] arguments)
{
_vpxRef0ChromaAddress = GetAddress(arguments);
}
private void SetVpxRef1ChromaAddr(int[] arguments)
{
_vpxRef1ChromaAddress = GetAddress(arguments);
}
private void SetVpxRef2ChromaAddr(int[] arguments)
{
_vpxRef2ChromaAddress = GetAddress(arguments);
}
private void SetVpxProbTablesAddr(int[] arguments)
{
_vpxProbTablesAddress = GetAddress(arguments);
}
private static ulong GetAddress(int[] arguments)
{
return (ulong)(uint)arguments[0] << 8;
}
internal void CopyPlanes(GpuContext gpu, SurfaceOutputConfig outputConfig)
{
switch (outputConfig.PixelFormat)
{
case SurfacePixelFormat.Rgba8: CopyPlanesRgba8 (gpu, outputConfig); break;
case SurfacePixelFormat.Yuv420P: CopyPlanesYuv420P(gpu, outputConfig); break;
default: ThrowUnimplementedPixelFormat(outputConfig.PixelFormat); break;
}
}
private void CopyPlanesRgba8(GpuContext gpu, SurfaceOutputConfig outputConfig)
{
FFmpegFrame frame = FFmpegWrapper.GetFrameRgba();
if ((frame.Width | frame.Height) == 0)
{
return;
}
throw new NotImplementedException();
}
private void CopyPlanesYuv420P(GpuContext gpu, SurfaceOutputConfig outputConfig)
{
FFmpegFrame frame = FFmpegWrapper.GetFrame();
if ((frame.Width | frame.Height) == 0)
{
return;
}
int halfSrcWidth = frame.Width / 2;
int halfWidth = frame.Width / 2;
int halfHeight = frame.Height / 2;
int alignedWidth = (outputConfig.SurfaceWidth + 0xff) & ~0xff;
for (int y = 0; y < frame.Height; y++)
{
int src = y * frame.Width;
int dst = y * alignedWidth;
int size = frame.Width;
for (int offset = 0; offset < size; offset++)
{
gpu.MemoryAccessor.WriteByte(outputConfig.SurfaceLumaAddress + (ulong)dst + (ulong)offset, *(frame.LumaPtr + src + offset));
}
}
// Copy chroma data from both channels with interleaving.
for (int y = 0; y < halfHeight; y++)
{
int src = y * halfSrcWidth;
int dst = y * alignedWidth;
for (int x = 0; x < halfWidth; x++)
{
gpu.MemoryAccessor.WriteByte(outputConfig.SurfaceChromaUAddress + (ulong)dst + (ulong)x * 2 + 0, *(frame.ChromaBPtr + src + x));
gpu.MemoryAccessor.WriteByte(outputConfig.SurfaceChromaUAddress + (ulong)dst + (ulong)x * 2 + 1, *(frame.ChromaRPtr + src + x));
}
}
}
private void ThrowUnimplementedCodec()
{
throw new NotImplementedException($"Codec \"{_currentVideoCodec}\" is not supported!");
}
private void ThrowUnimplementedPixelFormat(SurfacePixelFormat pixelFormat)
{
throw new NotImplementedException($"Pixel format \"{pixelFormat}\" is not supported!");
}
}
}