mirror of
https://github.com/Ryujinx/Ryujinx.git
synced 2024-10-01 12:30:00 +02:00
c1bdf19061
* Implement ARM32 memory instructions: LDM, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, STM, STR, STRB, STRD, STRH (immediate and register + immediate variants), implement CMP (immediate and register shifted by immediate variants) * Rename some opcode classes and flag masks for consistency * Fix a few suboptimal ARM32 codegen issues, only loads should be considered on decoder when checking if Rt == PC, and only NZCV flags should be considered for comparison optimizations * Take into account Rt2 for LDRD instructions aswell when checking if the instruction changes PC * Re-align arm32 instructions on the opcode table
1080 lines
No EOL
32 KiB
C#
1080 lines
No EOL
32 KiB
C#
using ChocolArm64;
|
|
using ChocolArm64.Memory;
|
|
using Ryujinx.HLE.HOS.Kernel.Common;
|
|
using Ryujinx.HLE.HOS.Kernel.Process;
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
|
|
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
|
{
|
|
class KThread : KSynchronizationObject, IKFutureSchedulerObject
|
|
{
|
|
public CpuThread Context { get; private set; }
|
|
|
|
public long AffinityMask { get; set; }
|
|
|
|
public long ThreadUid { get; private set; }
|
|
|
|
public long TotalTimeRunning { get; set; }
|
|
|
|
public KSynchronizationObject SignaledObj { get; set; }
|
|
|
|
public ulong CondVarAddress { get; set; }
|
|
|
|
private ulong _entrypoint;
|
|
|
|
public ulong MutexAddress { get; set; }
|
|
|
|
public KProcess Owner { get; private set; }
|
|
|
|
private ulong _tlsAddress;
|
|
|
|
public ulong TlsAddress => _tlsAddress;
|
|
public ulong TlsDramAddress { get; private set; }
|
|
|
|
public long LastScheduledTime { get; set; }
|
|
|
|
public LinkedListNode<KThread>[] SiblingsPerCore { get; private set; }
|
|
|
|
public LinkedList<KThread> Withholder { get; set; }
|
|
public LinkedListNode<KThread> WithholderNode { get; set; }
|
|
|
|
public LinkedListNode<KThread> ProcessListNode { get; set; }
|
|
|
|
private LinkedList<KThread> _mutexWaiters;
|
|
private LinkedListNode<KThread> _mutexWaiterNode;
|
|
|
|
public KThread MutexOwner { get; private set; }
|
|
|
|
public int ThreadHandleForUserMutex { get; set; }
|
|
|
|
private ThreadSchedState _forcePauseFlags;
|
|
|
|
public KernelResult ObjSyncResult { get; set; }
|
|
|
|
public int DynamicPriority { get; set; }
|
|
public int CurrentCore { get; set; }
|
|
public int BasePriority { get; set; }
|
|
public int PreferredCore { get; set; }
|
|
|
|
private long _affinityMaskOverride;
|
|
private int _preferredCoreOverride;
|
|
private int _affinityOverrideCount;
|
|
|
|
public ThreadSchedState SchedFlags { get; private set; }
|
|
|
|
public bool ShallBeTerminated { get; private set; }
|
|
|
|
public bool SyncCancelled { get; set; }
|
|
public bool WaitingSync { get; set; }
|
|
|
|
private bool _hasExited;
|
|
private bool _hasBeenInitialized;
|
|
private bool _hasBeenReleased;
|
|
|
|
public bool WaitingInArbitration { get; set; }
|
|
|
|
private KScheduler _scheduler;
|
|
|
|
private KSchedulingData _schedulingData;
|
|
|
|
public long LastPc { get; set; }
|
|
|
|
public KThread(Horizon system) : base(system)
|
|
{
|
|
_scheduler = system.Scheduler;
|
|
_schedulingData = system.Scheduler.SchedulingData;
|
|
|
|
SiblingsPerCore = new LinkedListNode<KThread>[KScheduler.CpuCoresCount];
|
|
|
|
_mutexWaiters = new LinkedList<KThread>();
|
|
}
|
|
|
|
public KernelResult Initialize(
|
|
ulong entrypoint,
|
|
ulong argsPtr,
|
|
ulong stackTop,
|
|
int priority,
|
|
int defaultCpuCore,
|
|
KProcess owner,
|
|
ThreadType type = ThreadType.User)
|
|
{
|
|
if ((uint)type > 3)
|
|
{
|
|
throw new ArgumentException($"Invalid thread type \"{type}\".");
|
|
}
|
|
|
|
PreferredCore = defaultCpuCore;
|
|
|
|
AffinityMask |= 1L << defaultCpuCore;
|
|
|
|
SchedFlags = type == ThreadType.Dummy
|
|
? ThreadSchedState.Running
|
|
: ThreadSchedState.None;
|
|
|
|
CurrentCore = PreferredCore;
|
|
|
|
DynamicPriority = priority;
|
|
BasePriority = priority;
|
|
|
|
ObjSyncResult = KernelResult.ThreadNotStarted;
|
|
|
|
_entrypoint = entrypoint;
|
|
|
|
if (type == ThreadType.User)
|
|
{
|
|
if (owner.AllocateThreadLocalStorage(out _tlsAddress) != KernelResult.Success)
|
|
{
|
|
return KernelResult.OutOfMemory;
|
|
}
|
|
|
|
TlsDramAddress = owner.MemoryManager.GetDramAddressFromVa(_tlsAddress);
|
|
|
|
MemoryHelper.FillWithZeros(owner.CpuMemory, (long)_tlsAddress, KTlsPageInfo.TlsEntrySize);
|
|
}
|
|
|
|
bool is64Bits;
|
|
|
|
if (owner != null)
|
|
{
|
|
Owner = owner;
|
|
|
|
owner.IncrementReferenceCount();
|
|
owner.IncrementThreadCount();
|
|
|
|
is64Bits = (owner.MmuFlags & 1) != 0;
|
|
}
|
|
else
|
|
{
|
|
is64Bits = true;
|
|
}
|
|
|
|
Context = new CpuThread(owner.Translator, owner.CpuMemory, (long)entrypoint);
|
|
|
|
bool isAarch32 = (Owner.MmuFlags & 1) == 0;
|
|
|
|
Context.ThreadState.Aarch32 = isAarch32;
|
|
|
|
Context.ThreadState.X0 = argsPtr;
|
|
|
|
if (isAarch32)
|
|
{
|
|
Context.ThreadState.X13 = (uint)stackTop;
|
|
}
|
|
else
|
|
{
|
|
Context.ThreadState.X31 = stackTop;
|
|
}
|
|
|
|
Context.ThreadState.CntfrqEl0 = 19200000;
|
|
Context.ThreadState.Tpidr = (long)_tlsAddress;
|
|
|
|
owner.SubscribeThreadEventHandlers(Context);
|
|
|
|
Context.WorkFinished += ThreadFinishedHandler;
|
|
|
|
ThreadUid = System.GetThreadUid();
|
|
|
|
_hasBeenInitialized = true;
|
|
|
|
if (owner != null)
|
|
{
|
|
owner.AddThread(this);
|
|
|
|
if (owner.IsPaused)
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
if (ShallBeTerminated || SchedFlags == ThreadSchedState.TerminationPending)
|
|
{
|
|
System.CriticalSection.Leave();
|
|
|
|
return KernelResult.Success;
|
|
}
|
|
|
|
_forcePauseFlags |= ThreadSchedState.ProcessPauseFlag;
|
|
|
|
CombineForcePauseFlags();
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
}
|
|
|
|
return KernelResult.Success;
|
|
}
|
|
|
|
public KernelResult Start()
|
|
{
|
|
if (!System.KernelInitialized)
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
if (!ShallBeTerminated && SchedFlags != ThreadSchedState.TerminationPending)
|
|
{
|
|
_forcePauseFlags |= ThreadSchedState.KernelInitPauseFlag;
|
|
|
|
CombineForcePauseFlags();
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
|
|
KernelResult result = KernelResult.ThreadTerminating;
|
|
|
|
System.CriticalSection.Enter();
|
|
|
|
if (!ShallBeTerminated)
|
|
{
|
|
KThread currentThread = System.Scheduler.GetCurrentThread();
|
|
|
|
while (SchedFlags != ThreadSchedState.TerminationPending &&
|
|
currentThread.SchedFlags != ThreadSchedState.TerminationPending &&
|
|
!currentThread.ShallBeTerminated)
|
|
{
|
|
if ((SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.None)
|
|
{
|
|
result = KernelResult.InvalidState;
|
|
|
|
break;
|
|
}
|
|
|
|
if (currentThread._forcePauseFlags == ThreadSchedState.None)
|
|
{
|
|
if (Owner != null && _forcePauseFlags != ThreadSchedState.None)
|
|
{
|
|
CombineForcePauseFlags();
|
|
}
|
|
|
|
SetNewSchedFlags(ThreadSchedState.Running);
|
|
|
|
result = KernelResult.Success;
|
|
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
currentThread.CombineForcePauseFlags();
|
|
|
|
System.CriticalSection.Leave();
|
|
System.CriticalSection.Enter();
|
|
|
|
if (currentThread.ShallBeTerminated)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
|
|
return result;
|
|
}
|
|
|
|
public void Exit()
|
|
{
|
|
//TODO: Debug event.
|
|
|
|
if (Owner != null)
|
|
{
|
|
Owner.ResourceLimit?.Release(LimitableResource.Thread, 0, 1);
|
|
|
|
_hasBeenReleased = true;
|
|
}
|
|
|
|
System.CriticalSection.Enter();
|
|
|
|
_forcePauseFlags &= ~ThreadSchedState.ForcePauseMask;
|
|
|
|
ExitImpl();
|
|
|
|
System.CriticalSection.Leave();
|
|
|
|
DecrementReferenceCount();
|
|
}
|
|
|
|
private void ExitImpl()
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
SetNewSchedFlags(ThreadSchedState.TerminationPending);
|
|
|
|
_hasExited = true;
|
|
|
|
Signal();
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
|
|
public KernelResult Sleep(long timeout)
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
if (ShallBeTerminated || SchedFlags == ThreadSchedState.TerminationPending)
|
|
{
|
|
System.CriticalSection.Leave();
|
|
|
|
return KernelResult.ThreadTerminating;
|
|
}
|
|
|
|
SetNewSchedFlags(ThreadSchedState.Paused);
|
|
|
|
if (timeout > 0)
|
|
{
|
|
System.TimeManager.ScheduleFutureInvocation(this, timeout);
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
|
|
if (timeout > 0)
|
|
{
|
|
System.TimeManager.UnscheduleFutureInvocation(this);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
public void Yield()
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
if (SchedFlags != ThreadSchedState.Running)
|
|
{
|
|
System.CriticalSection.Leave();
|
|
|
|
System.Scheduler.ContextSwitch();
|
|
|
|
return;
|
|
}
|
|
|
|
if (DynamicPriority < KScheduler.PrioritiesCount)
|
|
{
|
|
//Move current thread to the end of the queue.
|
|
_schedulingData.Reschedule(DynamicPriority, CurrentCore, this);
|
|
}
|
|
|
|
_scheduler.ThreadReselectionRequested = true;
|
|
|
|
System.CriticalSection.Leave();
|
|
|
|
System.Scheduler.ContextSwitch();
|
|
}
|
|
|
|
public void YieldWithLoadBalancing()
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
if (SchedFlags != ThreadSchedState.Running)
|
|
{
|
|
System.CriticalSection.Leave();
|
|
|
|
System.Scheduler.ContextSwitch();
|
|
|
|
return;
|
|
}
|
|
|
|
int prio = DynamicPriority;
|
|
int core = CurrentCore;
|
|
|
|
KThread nextThreadOnCurrentQueue = null;
|
|
|
|
if (DynamicPriority < KScheduler.PrioritiesCount)
|
|
{
|
|
//Move current thread to the end of the queue.
|
|
_schedulingData.Reschedule(prio, core, this);
|
|
|
|
Func<KThread, bool> predicate = x => x.DynamicPriority == prio;
|
|
|
|
nextThreadOnCurrentQueue = _schedulingData.ScheduledThreads(core).FirstOrDefault(predicate);
|
|
}
|
|
|
|
IEnumerable<KThread> SuitableCandidates()
|
|
{
|
|
foreach (KThread thread in _schedulingData.SuggestedThreads(core))
|
|
{
|
|
int srcCore = thread.CurrentCore;
|
|
|
|
if (srcCore >= 0)
|
|
{
|
|
KThread selectedSrcCore = _scheduler.CoreContexts[srcCore].SelectedThread;
|
|
|
|
if (selectedSrcCore == thread || ((selectedSrcCore?.DynamicPriority ?? 2) < 2))
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
//If the candidate was scheduled after the current thread, then it's not worth it,
|
|
//unless the priority is higher than the current one.
|
|
if (nextThreadOnCurrentQueue.LastScheduledTime >= thread.LastScheduledTime ||
|
|
nextThreadOnCurrentQueue.DynamicPriority < thread.DynamicPriority)
|
|
{
|
|
yield return thread;
|
|
}
|
|
}
|
|
}
|
|
|
|
KThread dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority <= prio);
|
|
|
|
if (dst != null)
|
|
{
|
|
_schedulingData.TransferToCore(dst.DynamicPriority, core, dst);
|
|
|
|
_scheduler.ThreadReselectionRequested = true;
|
|
}
|
|
|
|
if (this != nextThreadOnCurrentQueue)
|
|
{
|
|
_scheduler.ThreadReselectionRequested = true;
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
|
|
System.Scheduler.ContextSwitch();
|
|
}
|
|
|
|
public void YieldAndWaitForLoadBalancing()
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
if (SchedFlags != ThreadSchedState.Running)
|
|
{
|
|
System.CriticalSection.Leave();
|
|
|
|
System.Scheduler.ContextSwitch();
|
|
|
|
return;
|
|
}
|
|
|
|
int core = CurrentCore;
|
|
|
|
_schedulingData.TransferToCore(DynamicPriority, -1, this);
|
|
|
|
KThread selectedThread = null;
|
|
|
|
if (!_schedulingData.ScheduledThreads(core).Any())
|
|
{
|
|
foreach (KThread thread in _schedulingData.SuggestedThreads(core))
|
|
{
|
|
if (thread.CurrentCore < 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
KThread firstCandidate = _schedulingData.ScheduledThreads(thread.CurrentCore).FirstOrDefault();
|
|
|
|
if (firstCandidate == thread)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (firstCandidate == null || firstCandidate.DynamicPriority >= 2)
|
|
{
|
|
_schedulingData.TransferToCore(thread.DynamicPriority, core, thread);
|
|
|
|
selectedThread = thread;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (selectedThread != this)
|
|
{
|
|
_scheduler.ThreadReselectionRequested = true;
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
|
|
System.Scheduler.ContextSwitch();
|
|
}
|
|
|
|
public void SetPriority(int priority)
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
BasePriority = priority;
|
|
|
|
UpdatePriorityInheritance();
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
|
|
public KernelResult SetActivity(bool pause)
|
|
{
|
|
KernelResult result = KernelResult.Success;
|
|
|
|
System.CriticalSection.Enter();
|
|
|
|
ThreadSchedState lowNibble = SchedFlags & ThreadSchedState.LowMask;
|
|
|
|
if (lowNibble != ThreadSchedState.Paused && lowNibble != ThreadSchedState.Running)
|
|
{
|
|
System.CriticalSection.Leave();
|
|
|
|
return KernelResult.InvalidState;
|
|
}
|
|
|
|
System.CriticalSection.Enter();
|
|
|
|
if (!ShallBeTerminated && SchedFlags != ThreadSchedState.TerminationPending)
|
|
{
|
|
if (pause)
|
|
{
|
|
//Pause, the force pause flag should be clear (thread is NOT paused).
|
|
if ((_forcePauseFlags & ThreadSchedState.ThreadPauseFlag) == 0)
|
|
{
|
|
_forcePauseFlags |= ThreadSchedState.ThreadPauseFlag;
|
|
|
|
CombineForcePauseFlags();
|
|
}
|
|
else
|
|
{
|
|
result = KernelResult.InvalidState;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//Unpause, the force pause flag should be set (thread is paused).
|
|
if ((_forcePauseFlags & ThreadSchedState.ThreadPauseFlag) != 0)
|
|
{
|
|
ThreadSchedState oldForcePauseFlags = _forcePauseFlags;
|
|
|
|
_forcePauseFlags &= ~ThreadSchedState.ThreadPauseFlag;
|
|
|
|
if ((oldForcePauseFlags & ~ThreadSchedState.ThreadPauseFlag) == ThreadSchedState.None)
|
|
{
|
|
ThreadSchedState oldSchedFlags = SchedFlags;
|
|
|
|
SchedFlags &= ThreadSchedState.LowMask;
|
|
|
|
AdjustScheduling(oldSchedFlags);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
result = KernelResult.InvalidState;
|
|
}
|
|
}
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
System.CriticalSection.Leave();
|
|
|
|
return result;
|
|
}
|
|
|
|
public void CancelSynchronization()
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
if ((SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.Paused || !WaitingSync)
|
|
{
|
|
SyncCancelled = true;
|
|
}
|
|
else if (Withholder != null)
|
|
{
|
|
Withholder.Remove(WithholderNode);
|
|
|
|
SetNewSchedFlags(ThreadSchedState.Running);
|
|
|
|
Withholder = null;
|
|
|
|
SyncCancelled = true;
|
|
}
|
|
else
|
|
{
|
|
SignaledObj = null;
|
|
ObjSyncResult = KernelResult.Cancelled;
|
|
|
|
SetNewSchedFlags(ThreadSchedState.Running);
|
|
|
|
SyncCancelled = false;
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
|
|
public KernelResult SetCoreAndAffinityMask(int newCore, long newAffinityMask)
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
bool useOverride = _affinityOverrideCount != 0;
|
|
|
|
//The value -3 is "do not change the preferred core".
|
|
if (newCore == -3)
|
|
{
|
|
newCore = useOverride ? _preferredCoreOverride : PreferredCore;
|
|
|
|
if ((newAffinityMask & (1 << newCore)) == 0)
|
|
{
|
|
System.CriticalSection.Leave();
|
|
|
|
return KernelResult.InvalidCombination;
|
|
}
|
|
}
|
|
|
|
if (useOverride)
|
|
{
|
|
_preferredCoreOverride = newCore;
|
|
_affinityMaskOverride = newAffinityMask;
|
|
}
|
|
else
|
|
{
|
|
long oldAffinityMask = AffinityMask;
|
|
|
|
PreferredCore = newCore;
|
|
AffinityMask = newAffinityMask;
|
|
|
|
if (oldAffinityMask != newAffinityMask)
|
|
{
|
|
int oldCore = CurrentCore;
|
|
|
|
if (CurrentCore >= 0 && ((AffinityMask >> CurrentCore) & 1) == 0)
|
|
{
|
|
if (PreferredCore < 0)
|
|
{
|
|
CurrentCore = HighestSetCore(AffinityMask);
|
|
}
|
|
else
|
|
{
|
|
CurrentCore = PreferredCore;
|
|
}
|
|
}
|
|
|
|
AdjustSchedulingForNewAffinity(oldAffinityMask, oldCore);
|
|
}
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
|
|
return KernelResult.Success;
|
|
}
|
|
|
|
private static int HighestSetCore(long mask)
|
|
{
|
|
for (int core = KScheduler.CpuCoresCount - 1; core >= 0; core--)
|
|
{
|
|
if (((mask >> core) & 1) != 0)
|
|
{
|
|
return core;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
private void CombineForcePauseFlags()
|
|
{
|
|
ThreadSchedState oldFlags = SchedFlags;
|
|
ThreadSchedState lowNibble = SchedFlags & ThreadSchedState.LowMask;
|
|
|
|
SchedFlags = lowNibble | _forcePauseFlags;
|
|
|
|
AdjustScheduling(oldFlags);
|
|
}
|
|
|
|
private void SetNewSchedFlags(ThreadSchedState newFlags)
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
ThreadSchedState oldFlags = SchedFlags;
|
|
|
|
SchedFlags = (oldFlags & ThreadSchedState.HighMask) | newFlags;
|
|
|
|
if ((oldFlags & ThreadSchedState.LowMask) != newFlags)
|
|
{
|
|
AdjustScheduling(oldFlags);
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
|
|
public void ReleaseAndResume()
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
if ((SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.Paused)
|
|
{
|
|
if (Withholder != null)
|
|
{
|
|
Withholder.Remove(WithholderNode);
|
|
|
|
SetNewSchedFlags(ThreadSchedState.Running);
|
|
|
|
Withholder = null;
|
|
}
|
|
else
|
|
{
|
|
SetNewSchedFlags(ThreadSchedState.Running);
|
|
}
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
|
|
public void Reschedule(ThreadSchedState newFlags)
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
ThreadSchedState oldFlags = SchedFlags;
|
|
|
|
SchedFlags = (oldFlags & ThreadSchedState.HighMask) |
|
|
(newFlags & ThreadSchedState.LowMask);
|
|
|
|
AdjustScheduling(oldFlags);
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
|
|
public void AddMutexWaiter(KThread requester)
|
|
{
|
|
AddToMutexWaitersList(requester);
|
|
|
|
requester.MutexOwner = this;
|
|
|
|
UpdatePriorityInheritance();
|
|
}
|
|
|
|
public void RemoveMutexWaiter(KThread thread)
|
|
{
|
|
if (thread._mutexWaiterNode?.List != null)
|
|
{
|
|
_mutexWaiters.Remove(thread._mutexWaiterNode);
|
|
}
|
|
|
|
thread.MutexOwner = null;
|
|
|
|
UpdatePriorityInheritance();
|
|
}
|
|
|
|
public KThread RelinquishMutex(ulong mutexAddress, out int count)
|
|
{
|
|
count = 0;
|
|
|
|
if (_mutexWaiters.First == null)
|
|
{
|
|
return null;
|
|
}
|
|
|
|
KThread newMutexOwner = null;
|
|
|
|
LinkedListNode<KThread> currentNode = _mutexWaiters.First;
|
|
|
|
do
|
|
{
|
|
//Skip all threads that are not waiting for this mutex.
|
|
while (currentNode != null && currentNode.Value.MutexAddress != mutexAddress)
|
|
{
|
|
currentNode = currentNode.Next;
|
|
}
|
|
|
|
if (currentNode == null)
|
|
{
|
|
break;
|
|
}
|
|
|
|
LinkedListNode<KThread> nextNode = currentNode.Next;
|
|
|
|
_mutexWaiters.Remove(currentNode);
|
|
|
|
currentNode.Value.MutexOwner = newMutexOwner;
|
|
|
|
if (newMutexOwner != null)
|
|
{
|
|
//New owner was already selected, re-insert on new owner list.
|
|
newMutexOwner.AddToMutexWaitersList(currentNode.Value);
|
|
}
|
|
else
|
|
{
|
|
//New owner not selected yet, use current thread.
|
|
newMutexOwner = currentNode.Value;
|
|
}
|
|
|
|
count++;
|
|
|
|
currentNode = nextNode;
|
|
}
|
|
while (currentNode != null);
|
|
|
|
if (newMutexOwner != null)
|
|
{
|
|
UpdatePriorityInheritance();
|
|
|
|
newMutexOwner.UpdatePriorityInheritance();
|
|
}
|
|
|
|
return newMutexOwner;
|
|
}
|
|
|
|
private void UpdatePriorityInheritance()
|
|
{
|
|
//If any of the threads waiting for the mutex has
|
|
//higher priority than the current thread, then
|
|
//the current thread inherits that priority.
|
|
int highestPriority = BasePriority;
|
|
|
|
if (_mutexWaiters.First != null)
|
|
{
|
|
int waitingDynamicPriority = _mutexWaiters.First.Value.DynamicPriority;
|
|
|
|
if (waitingDynamicPriority < highestPriority)
|
|
{
|
|
highestPriority = waitingDynamicPriority;
|
|
}
|
|
}
|
|
|
|
if (highestPriority != DynamicPriority)
|
|
{
|
|
int oldPriority = DynamicPriority;
|
|
|
|
DynamicPriority = highestPriority;
|
|
|
|
AdjustSchedulingForNewPriority(oldPriority);
|
|
|
|
if (MutexOwner != null)
|
|
{
|
|
//Remove and re-insert to ensure proper sorting based on new priority.
|
|
MutexOwner._mutexWaiters.Remove(_mutexWaiterNode);
|
|
|
|
MutexOwner.AddToMutexWaitersList(this);
|
|
|
|
MutexOwner.UpdatePriorityInheritance();
|
|
}
|
|
}
|
|
}
|
|
|
|
private void AddToMutexWaitersList(KThread thread)
|
|
{
|
|
LinkedListNode<KThread> nextPrio = _mutexWaiters.First;
|
|
|
|
int currentPriority = thread.DynamicPriority;
|
|
|
|
while (nextPrio != null && nextPrio.Value.DynamicPriority <= currentPriority)
|
|
{
|
|
nextPrio = nextPrio.Next;
|
|
}
|
|
|
|
if (nextPrio != null)
|
|
{
|
|
thread._mutexWaiterNode = _mutexWaiters.AddBefore(nextPrio, thread);
|
|
}
|
|
else
|
|
{
|
|
thread._mutexWaiterNode = _mutexWaiters.AddLast(thread);
|
|
}
|
|
}
|
|
|
|
private void AdjustScheduling(ThreadSchedState oldFlags)
|
|
{
|
|
if (oldFlags == SchedFlags)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (oldFlags == ThreadSchedState.Running)
|
|
{
|
|
//Was running, now it's stopped.
|
|
if (CurrentCore >= 0)
|
|
{
|
|
_schedulingData.Unschedule(DynamicPriority, CurrentCore, this);
|
|
}
|
|
|
|
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
|
|
{
|
|
if (core != CurrentCore && ((AffinityMask >> core) & 1) != 0)
|
|
{
|
|
_schedulingData.Unsuggest(DynamicPriority, core, this);
|
|
}
|
|
}
|
|
}
|
|
else if (SchedFlags == ThreadSchedState.Running)
|
|
{
|
|
//Was stopped, now it's running.
|
|
if (CurrentCore >= 0)
|
|
{
|
|
_schedulingData.Schedule(DynamicPriority, CurrentCore, this);
|
|
}
|
|
|
|
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
|
|
{
|
|
if (core != CurrentCore && ((AffinityMask >> core) & 1) != 0)
|
|
{
|
|
_schedulingData.Suggest(DynamicPriority, core, this);
|
|
}
|
|
}
|
|
}
|
|
|
|
_scheduler.ThreadReselectionRequested = true;
|
|
}
|
|
|
|
private void AdjustSchedulingForNewPriority(int oldPriority)
|
|
{
|
|
if (SchedFlags != ThreadSchedState.Running)
|
|
{
|
|
return;
|
|
}
|
|
|
|
//Remove thread from the old priority queues.
|
|
if (CurrentCore >= 0)
|
|
{
|
|
_schedulingData.Unschedule(oldPriority, CurrentCore, this);
|
|
}
|
|
|
|
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
|
|
{
|
|
if (core != CurrentCore && ((AffinityMask >> core) & 1) != 0)
|
|
{
|
|
_schedulingData.Unsuggest(oldPriority, core, this);
|
|
}
|
|
}
|
|
|
|
//Add thread to the new priority queues.
|
|
KThread currentThread = _scheduler.GetCurrentThread();
|
|
|
|
if (CurrentCore >= 0)
|
|
{
|
|
if (currentThread == this)
|
|
{
|
|
_schedulingData.SchedulePrepend(DynamicPriority, CurrentCore, this);
|
|
}
|
|
else
|
|
{
|
|
_schedulingData.Schedule(DynamicPriority, CurrentCore, this);
|
|
}
|
|
}
|
|
|
|
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
|
|
{
|
|
if (core != CurrentCore && ((AffinityMask >> core) & 1) != 0)
|
|
{
|
|
_schedulingData.Suggest(DynamicPriority, core, this);
|
|
}
|
|
}
|
|
|
|
_scheduler.ThreadReselectionRequested = true;
|
|
}
|
|
|
|
private void AdjustSchedulingForNewAffinity(long oldAffinityMask, int oldCore)
|
|
{
|
|
if (SchedFlags != ThreadSchedState.Running || DynamicPriority >= KScheduler.PrioritiesCount)
|
|
{
|
|
return;
|
|
}
|
|
|
|
//Remove thread from the old priority queues.
|
|
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
|
|
{
|
|
if (((oldAffinityMask >> core) & 1) != 0)
|
|
{
|
|
if (core == oldCore)
|
|
{
|
|
_schedulingData.Unschedule(DynamicPriority, core, this);
|
|
}
|
|
else
|
|
{
|
|
_schedulingData.Unsuggest(DynamicPriority, core, this);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Add thread to the new priority queues.
|
|
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
|
|
{
|
|
if (((AffinityMask >> core) & 1) != 0)
|
|
{
|
|
if (core == CurrentCore)
|
|
{
|
|
_schedulingData.Schedule(DynamicPriority, core, this);
|
|
}
|
|
else
|
|
{
|
|
_schedulingData.Suggest(DynamicPriority, core, this);
|
|
}
|
|
}
|
|
}
|
|
|
|
_scheduler.ThreadReselectionRequested = true;
|
|
}
|
|
|
|
public void SetEntryArguments(long argsPtr, int threadHandle)
|
|
{
|
|
Context.ThreadState.X0 = (ulong)argsPtr;
|
|
Context.ThreadState.X1 = (ulong)threadHandle;
|
|
}
|
|
|
|
public void ClearExclusive()
|
|
{
|
|
Owner.CpuMemory.ClearExclusive(CurrentCore);
|
|
}
|
|
|
|
public void TimeUp()
|
|
{
|
|
ReleaseAndResume();
|
|
}
|
|
|
|
public void PrintGuestStackTrace()
|
|
{
|
|
Owner.Debugger.PrintGuestStackTrace(Context.ThreadState);
|
|
}
|
|
|
|
private void ThreadFinishedHandler(object sender, EventArgs e)
|
|
{
|
|
System.Scheduler.ExitThread(this);
|
|
System.Scheduler.RemoveThread(this);
|
|
}
|
|
|
|
public override bool IsSignaled()
|
|
{
|
|
return _hasExited;
|
|
}
|
|
|
|
protected override void Destroy()
|
|
{
|
|
if (_hasBeenInitialized)
|
|
{
|
|
FreeResources();
|
|
|
|
bool released = Owner != null || _hasBeenReleased;
|
|
|
|
if (Owner != null)
|
|
{
|
|
Owner.ResourceLimit?.Release(LimitableResource.Thread, 1, released ? 0 : 1);
|
|
|
|
Owner.DecrementReferenceCount();
|
|
}
|
|
else
|
|
{
|
|
System.ResourceLimit.Release(LimitableResource.Thread, 1, released ? 0 : 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
private void FreeResources()
|
|
{
|
|
Owner?.RemoveThread(this);
|
|
|
|
if (_tlsAddress != 0 && Owner.FreeThreadLocalStorage(_tlsAddress) != KernelResult.Success)
|
|
{
|
|
throw new InvalidOperationException("Unexpected failure freeing thread local storage.");
|
|
}
|
|
|
|
System.CriticalSection.Enter();
|
|
|
|
//Wake up all threads that may be waiting for a mutex being held by this thread.
|
|
foreach (KThread thread in _mutexWaiters)
|
|
{
|
|
thread.MutexOwner = null;
|
|
thread._preferredCoreOverride = 0;
|
|
thread.ObjSyncResult = KernelResult.InvalidState;
|
|
|
|
thread.ReleaseAndResume();
|
|
}
|
|
|
|
System.CriticalSection.Leave();
|
|
|
|
Owner?.DecrementThreadCountAndTerminateIfZero();
|
|
}
|
|
}
|
|
} |