mirror of
https://github.com/Ryujinx/Ryujinx.git
synced 2024-10-01 12:30:00 +02:00
d92fff541b
* Replace CacheResourceWrite with more general "precise" write The goal of CacheResourceWrite was to notify GPU resources when they were modified directly, by looking up the modified address/size in a structure and calling a method on each resource. The downside of this is that each resource cache has to be queried individually, they all have to implement their own way to do this, and it can only signal to resources using the same PhysicalMemory instance. This PR adds the ability to signal a write as "precise" on the tracking, which signals a special handler (if present) which can be used to avoid unnecessary flush actions, or maybe even more. For buffers, precise writes specifically do not flush, and instead punch a hole in the modified range list to indicate that the data on GPU has been replaced. The downside is that precise actions must ignore the page protection bits and always signal - as they need to notify the target resource to ignore the sequence number optimization. I had to reintroduce the sequence number increment after I2M, as removing it was causing issues in rabbids kingdom battle. However - all resources modified by I2M are notified directly to lower their sequence number, so the problem is likely that another unrelated resource is not being properly updated. Thankfully, doing this does not affect performance in the games I tested. This should fix regressions from #2624. Test any games that were broken by that. (RF4, rabbids kingdom battle) I've also added a sequence number increment to ThreedClass.IncrementSyncpoint, as it seems to fix buffer corruption in OpenGL homebrew. (this was a regression from removing sequence number increment from constant buffer update - another unrelated resource thing) * Add tests. * Add XML docs for GpuRegionHandle * Skip UpdateProtection if only precise actions were called This allows precise actions to skip reprotection costs.
149 lines
7 KiB
C#
149 lines
7 KiB
C#
using Ryujinx.Memory.Range;
|
|
using System;
|
|
using System.Collections.Generic;
|
|
|
|
namespace Ryujinx.Memory
|
|
{
|
|
public interface IVirtualMemoryManager
|
|
{
|
|
/// <summary>
|
|
/// Maps a virtual memory range into a physical memory range.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Addresses and size must be page aligned.
|
|
/// </remarks>
|
|
/// <param name="va">Virtual memory address</param>
|
|
/// <param name="hostAddress">Pointer where the region should be mapped to</param>
|
|
/// <param name="size">Size to be mapped</param>
|
|
void Map(ulong va, nuint hostAddress, ulong size);
|
|
|
|
/// <summary>
|
|
/// Unmaps a previously mapped range of virtual memory.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address of the range to be unmapped</param>
|
|
/// <param name="size">Size of the range to be unmapped</param>
|
|
void Unmap(ulong va, ulong size);
|
|
|
|
/// <summary>
|
|
/// Reads data from CPU mapped memory.
|
|
/// </summary>
|
|
/// <typeparam name="T">Type of the data being read</typeparam>
|
|
/// <param name="va">Virtual address of the data in memory</param>
|
|
/// <returns>The data</returns>
|
|
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
|
|
T Read<T>(ulong va) where T : unmanaged;
|
|
|
|
/// <summary>
|
|
/// Reads data from CPU mapped memory.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address of the data in memory</param>
|
|
/// <param name="data">Span to store the data being read into</param>
|
|
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
|
|
void Read(ulong va, Span<byte> data);
|
|
|
|
/// <summary>
|
|
/// Writes data to CPU mapped memory.
|
|
/// </summary>
|
|
/// <typeparam name="T">Type of the data being written</typeparam>
|
|
/// <param name="va">Virtual address to write the data into</param>
|
|
/// <param name="value">Data to be written</param>
|
|
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
|
|
void Write<T>(ulong va, T value) where T : unmanaged;
|
|
|
|
/// <summary>
|
|
/// Writes data to CPU mapped memory, with write tracking.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address to write the data into</param>
|
|
/// <param name="data">Data to be written</param>
|
|
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
|
|
void Write(ulong va, ReadOnlySpan<byte> data);
|
|
|
|
void Fill(ulong va, ulong size, byte value)
|
|
{
|
|
const int MaxChunkSize = 1 << 24;
|
|
|
|
for (ulong subOffset = 0; subOffset < size; subOffset += MaxChunkSize)
|
|
{
|
|
int copySize = (int)Math.Min(MaxChunkSize, size - subOffset);
|
|
|
|
using var writableRegion = GetWritableRegion(va + subOffset, copySize);
|
|
|
|
writableRegion.Memory.Span.Fill(0);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets a read-only span of data from CPU mapped memory.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address of the data</param>
|
|
/// <param name="size">Size of the data</param>
|
|
/// <param name="tracked">True if read tracking is triggered on the span</param>
|
|
/// <returns>A read-only span of the data</returns>
|
|
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
|
|
ReadOnlySpan<byte> GetSpan(ulong va, int size, bool tracked = false);
|
|
|
|
/// <summary>
|
|
/// Gets a region of memory that can be written to.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address of the data</param>
|
|
/// <param name="size">Size of the data</param>
|
|
/// <param name="tracked">True if write tracking is triggered on the span</param>
|
|
/// <returns>A writable region of memory containing the data</returns>
|
|
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
|
|
WritableRegion GetWritableRegion(ulong va, int size, bool tracked = false);
|
|
|
|
/// <summary>
|
|
/// Gets a reference for the given type at the specified virtual memory address.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// The data must be located at a contiguous memory region.
|
|
/// </remarks>
|
|
/// <typeparam name="T">Type of the data to get the reference</typeparam>
|
|
/// <param name="va">Virtual address of the data</param>
|
|
/// <returns>A reference to the data in memory</returns>
|
|
/// <exception cref="MemoryNotContiguousException">Throw if the specified memory region is not contiguous in physical memory</exception>
|
|
ref T GetRef<T>(ulong va) where T : unmanaged;
|
|
|
|
/// <summary>
|
|
/// Gets the physical regions that make up the given virtual address region.
|
|
/// If any part of the virtual region is unmapped, null is returned.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address of the range</param>
|
|
/// <param name="size">Size of the range</param>
|
|
/// <returns>Array of physical regions</returns>
|
|
IEnumerable<HostMemoryRange> GetPhysicalRegions(ulong va, ulong size);
|
|
|
|
/// <summary>
|
|
/// Checks if the page at a given CPU virtual address is mapped.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address to check</param>
|
|
/// <returns>True if the address is mapped, false otherwise</returns>
|
|
bool IsMapped(ulong va);
|
|
|
|
/// <summary>
|
|
/// Checks if a memory range is mapped.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address of the range</param>
|
|
/// <param name="size">Size of the range in bytes</param>
|
|
/// <returns>True if the entire range is mapped, false otherwise</returns>
|
|
bool IsRangeMapped(ulong va, ulong size);
|
|
|
|
/// <summary>
|
|
/// Alerts the memory tracking that a given region has been read from or written to.
|
|
/// This should be called before read/write is performed.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address of the region</param>
|
|
/// <param name="size">Size of the region</param>
|
|
/// <param name="write">True if the region was written, false if read</param>
|
|
/// <param name="precise">True if the access is precise, false otherwise</param>
|
|
void SignalMemoryTracking(ulong va, ulong size, bool write, bool precise = false);
|
|
|
|
/// <summary>
|
|
/// Reprotect a region of virtual memory for tracking.
|
|
/// </summary>
|
|
/// <param name="va">Virtual address base</param>
|
|
/// <param name="size">Size of the region to protect</param>
|
|
/// <param name="protection">Memory protection to set</param>
|
|
void TrackingReprotect(ulong va, ulong size, MemoryPermission protection);
|
|
}
|
|
}
|